17 research outputs found

    The benefits of being a near-peer teacher

    Get PDF
    Background: Near-peer teaching is used in anatomy education because of its benefits to the learner, teacher and faculty. Despite the range of reports focusing on the learner, the advantages for the teacher, which are thought to include communication skills, subject knowledge and employability, are only beginning to be explored. Method: A questionnaire was distributed to the teachers involved in anatomy near-peer teaching at the University of Southampton and Brighton and Sussex Medical School. This questionnaire was designed using 0-10 rating scales to assess teacher perspectives on their level of knowledge, teaching skills and enjoyment of teaching. Free text responses determined the teachers’ motivation and perceived benefits from the teaching. Results: Twenty-eight questionnaires were gathered (54.9% response rate) including 20 from Southampton and 8 from BSMS. Long term knowledge retention and better understanding of the material were rated 8.1 and 7.9 out of 10 respectively. Eight responses were from currently practising doctors, who rated how much they now use their teaching skills as doctors as 8.9 out of 10. Of the 8 doctors, 7 gained points for their foundation programme applications as a direct result of near-peer teaching. The most common motivator for engaging in teaching was to improve subject matter knowledge and the most common benefit was improved communication skills. Discussion: There are numerous advantages to being a near-peer teacher in medical school, which include knowledge improvement, transferrable professional skills and employability. These initial results support the hypothesised benefits to the teachers and provide a foundation for further longitudinal studies

    Preliminary estimates of the abundance and fidelity of dolphins associating with a demersal trawl fishery

    Get PDF
    The incidental capture of wildlife in fishing gear presents a global conservation challenge. As a baseline to inform assessments of the impact of bycatch on bottlenose dolphins (Tursiops truncatus) interacting with an Australian trawl fishery, we conducted an aerial survey to estimate dolphin abundance across the fishery. Concurrently, we carried out boat-based dolphin photo-identification to assess short-term fidelity to foraging around trawlers, and used photographic and genetic data to infer longer-term fidelity to the fishery. We estimated abundance at approximate to 2,300 dolphins (95% CI = 1,247-4,214) over the ≈ 25,880-km2 fishery. Mark-recapture estimates yielded 226 (SE = 38.5) dolphins associating with one trawler and some individuals photographed up to seven times over 12 capture periods. Moreover, photographic and genetic re-sampling over three years confirmed that some individuals show longterm fidelity to trawler-associated foraging. Our study presents the first abundance estimate for any Australian pelagic dolphin community and documents individuals associating with trawlers over days, months and years. Without trend data or correction factors for dolphin availability, the impact of bycatch on this dolphin population's conservation status remains unknown. These results should be taken into account by management agencies assessing the impact of fisheries-related mortality on this protected species.Publisher PDFPeer reviewe

    The National Undergraduate Neuroanatomy Competition: Five years of educating, inspiring and motivating our future neurologists and neurosurgeons

    No full text
    Neurological conditions are common so a knowledge of neuroanatomy is necessary for junior doctors. Additionally, some students have a particular interest in neuroscience. However, little time is dedicated to neuroanatomy in the medical curriculum, and many students struggle with neuroanatomy. The National Undergraduate Neuroanatomy Competition (NUNC) aims to support the development of neuroanatomical knowledge among medical students and promote interest in neurosciences. Students who attended the NUNC completed a series of neuroanatomy based examinations and a questionnaire investigating aspects of neuroanatomy teaching and resources at their home university. 387 students attended the NUNC between 2013 and 2017, of which 382 had a complete data set (response rate 98.7%). Male students significantly outperformed female students (p &lt; 0.0001) and clinical students outperformed preclinical students (p &lt; 0.05). Best answered questions were on the spine (average score 53.9%), and the most poorly answered questions were on the vasculature (average score 44.7%). Students felt that the neuroanatomy teaching, time spent on neuroanatomy and dissection/prosection resources were all reasonable (6-7/10) at their home institution. E-learning resources were rated more poorly (5.4/10). We conclude that the NUNC gives students the opportunity to enhance their neuroanatomical knowledge and gives keen students the chance to develop their interest.</p

    Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium

    No full text
    Background: The Invasive Respiratory Infection Surveillance (IRIS) Consortium was established to assess the impact of the COVID-19 pandemic on invasive diseases caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, and Streptococcus agalactiae. We aimed to analyse the incidence and distribution of these diseases during the first 2 years of the COVID-19 pandemic compared to the 2 years preceding the pandemic. Methods: For this prospective analysis, laboratories in 30 countries and territories representing five continents submitted surveillance data from Jan 1, 2018, to Jan 2, 2022, to private projects within databases in PubMLST. The impact of COVID-19 containment measures on the overall number of cases was analysed, and changes in disease distributions by patient age and serotype or group were examined. Interrupted time-series analyses were done to quantify the impact of pandemic response measures and their relaxation on disease rates, and autoregressive integrated moving average models were used to estimate effect sizes and forecast counterfactual trends by hemisphere. Findings: Overall, 116 841 cases were analysed: 76 481 in 2018–19, before the pandemic, and 40 360 in 2020–21, during the pandemic. During the pandemic there was a significant reduction in the risk of disease caused by S pneumoniae (risk ratio 0·47; 95% CI 0·40–0·55), H influenzae (0·51; 0·40–0·66) and N meningitidis (0·26; 0·21–0·31), while no significant changes were observed for S agalactiae (1·02; 0·75–1·40), which is not transmitted via the respiratory route. No major changes in the distribution of cases were observed when stratified by patient age or serotype or group. An estimated 36 289 (95% prediction interval 17 145–55 434) cases of invasive bacterial disease were averted during the first 2 years of the pandemic among IRIS-participating countries and territories. Interpretation: COVID-19 containment measures were associated with a sustained decrease in the incidence of invasive disease caused by S pneumoniae, H influenzae, and N meningitidis during the first 2 years of the pandemic, but cases began to increase in some countries towards the end of 2021 as pandemic restrictions were lifted. These IRIS data provide a better understanding of microbial transmission, will inform vaccine development and implementation, and can contribute to health-care service planning and provision of policies. Funding: Wellcome Trust, NIHR Oxford Biomedical Research Centre, Spanish Ministry of Science and Innovation, Korea Disease Control and Prevention Agency, Torsten Söderberg Foundation, Stockholm County Council, Swedish Research Council, German Federal Ministry of Health, Robert Koch Institute, Pfizer, Merck, and the Greek National Public Health Organization

    Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data

    Get PDF
    Background Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis, which are typically transmitted via respiratory droplets, are leading causes of invasive diseases, including bacteraemic pneumonia and meningitis, and of secondary infections subsequent to post-viral respiratory disease. The aim of this study was to investigate the incidence of invasive disease due to these pathogens during the early months of the COVID-19 pandemic. Methods In this prospective analysis of surveillance data, laboratories in 26 countries and territories across six continents submitted data on cases of invasive disease due to S pneumoniae, H influenzae, and N meningitidis from Jan 1, 2018, to May, 31, 2020, as part of the Invasive Respiratory Infection Surveillance (IRIS) Initiative. Numbers of weekly cases in 2020 were compared with corresponding data for 2018 and 2019. Data for invasive disease due to Streptococcus agalactiae, a non-respiratory pathogen, were collected from nine laboratories for comparison. The stringency of COVID-19 containment measures was quantified using the Oxford COVID-19 Government Response Tracker. Changes in population movements were assessed using Google COVID-19 Community Mobility Reports. Interrupted time-series modelling quantified changes in the incidence of invasive disease due to S pneumoniae, H influenzae, and N meningitidis in 2020 relative to when containment measures were imposed. Findings 27 laboratories from 26 countries and territories submitted data to the IRIS Initiative for S pneumoniae (62 434 total cases), 24 laboratories from 24 countries submitted data for H influenzae (7796 total cases), and 21 laboratories from 21 countries submitted data for N meningitidis (5877 total cases). All countries and territories had experienced a significant and sustained reduction in invasive diseases due to S pneumoniae, H influenzae, and N meningitidis in early 2020 (Jan 1 to May 31, 2020), coinciding with the introduction of COVID-19 containment measures in each country. By contrast, no significant changes in the incidence of invasive S agalactiae infections were observed. Similar trends were observed across most countries and territories despite differing stringency in COVID-19 control policies. The incidence of reported S pneumoniae infections decreased by 68% at 4 weeks (incidence rate ratio 0·32 [95% CI 0·27–0·37]) and 82% at 8 weeks (0·18 [0·14–0·23]) following the week in which significant changes in population movements were recorded. Interpretation The introduction of COVID-19 containment policies and public information campaigns likely reduced transmission of S pneumoniae, H influenzae, and N meningitidis, leading to a significant reduction in life-threatening invasive diseases in many countries worldwide
    corecore