66 research outputs found

    Clinical features of a novel TIMP-3 mutation causing Sorsby's fundus dystrophy: implications for disease mechanism

    Get PDF
    AIMS: To describe the phenotype in three family members affected by a novel mutation in the gene coding for the enzyme tissue inhibitor of metalloproteinase-3 (TIMP-3). METHODS: Three members of the same family were seen with a history of nyctalopia and visual loss due to maculopathy. Clinical features were consistent with Sorsby's fundus dystrophy. Exon 5 of the gene coding for TIMP-3 was amplified by the polymerase chain reaction, single strand conformation polymorphism analysis undertaken and exon 5 amplicons were directly sequenced. RESULTS: Onset of symptoms was in the third to fourth decade. Five of six eyes had geographic macular atrophy rather than neovascularisation as a cause for central visual loss. Peripheral retinal pigmentary disturbances were present. Scotopic ERGs were abnormal in all three. Mutation analysis showed a GT transversion in all three resulting in a premature termination codon, E139X, deleting most of the carboxy terminal domain of TIMP-3. CONCLUSIONS: The patients described had a form of Sorsby's fundus dystrophy which fell at the severe end of the spectrum of this disease. Postulated disease mechanisms include deposition of dimerised TIMP-3 protein

    Combining machine learning and conventional statistical approaches for risk factor discovery in a large cohort study

    Get PDF
    We present a simple and efficient hypothesis-free machine learning pipeline for risk factor discovery that accounts for non-linearity and interaction in large biomedical databases with minimal variable pre-processing. In this study, mortality models were built using gradient boosting decision trees (GBDT) and important predictors were identified using a Shapley values-based feature attribution method, SHAP values. Cox models controlled for false discovery rate were used for confounder adjustment, interpretability, and further validation. The pipeline was tested using information from 502,506 UK Biobank participants, aged 37–73 years at recruitment and followed over seven years for mortality registrations. From the 11,639 predictors included in GBDT, 193 potential risk factors had SHAP values ≄ 0.05, passed the correlation test, and were selected for further modelling. Of the total variable importance summed up, 60% was directly health related, and baseline characteristics, socio-demographics, and lifestyle factors each contributed about 10%. Cox models adjusted for baseline characteristics, showed evidence for an association with mortality for 166 out of the 193 predictors. These included mostly well-known risk factors (e.g., age, sex, ethnicity, education, material deprivation, smoking, physical activity, self-rated health, BMI, and many disease outcomes). For 19 predictors we saw evidence for an association in the unadjusted but not adjusted analyses, suggesting bias by confounding. Our GBDT-SHAP pipeline was able to identify relevant predictors ‘hidden’ within thousands of variables, providing an efficient and pragmatic solution for the first stage of hypothesis free risk factor identification.Iqbal Madakkatel, Ang Zhou, Mark D. McDonnell, and Elina Hyppöne

    Cancer tissue classification using supervised machine learning applied to maldi mass spectrometry imaging

    Get PDF
    Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) can determine the spatial distribution of analytes such as protein distributions in a tissue section according to their mass-to-charge ratio. Here, we explored the clinical potential of machine learning (ML) applied to MALDI MSI data for cancer diagnostic classification using tissue microarrays (TMAs) on 302 colorectal (CRC) and 257 endometrial cancer (EC)) patients. ML based on deep neural networks discriminated colorectal tumour from normal tissue with an overall accuracy of 98% in balanced cross-validation (98.2% sensitivity and 98.6% specificity). Moreover, our machine learning approach predicted the presence of lymph node metastasis (LNM) for primary tumours of EC with an accuracy of 80% (90% sensitivity and 69% specificity). Our results demonstrate the capability of MALDI MSI for complementing classic histopathological examination for cancer diagnostic applications.Paul Mittal, Mark R. Condina, Manuela Klingler-Hoffmann, Gurjeet Kaur, Martin K. Oehler, Oliver M. Siebe

    A deep convolutional neural network for segmentation of whole-slide pathology images identifies novel tumour cell-perivascular niche interactions that are associated with poor survival in glioblastoma

    Get PDF
    Background: Glioblastoma is the most aggressive type of brain cancer with high-levels of intra- and inter-tumour heterogeneity that contribute to its rapid growth and invasion within the brain. However, a spatial characterisation of gene signatures and the cell types expressing these in different tumour locations is still lacking. Methods: We have used a deep convolutional neural network (DCNN) as a semantic segmentation model to segment seven different tumour regions including leading edge (LE), infiltrating tumour (IT), cellular tumour (CT), cellular tumour microvascular proliferation (CTmvp), cellular tumour pseudopalisading region around necrosis (CTpan), cellular tumour perinecrotic zones (CTpnz) and cellular tumour necrosis (CTne) in digitised glioblastoma histopathological slides from The Cancer Genome Atlas (TCGA). Correlation analysis between segmentation results from tumour images together with matched RNA expression data was performed to identify genetic signatures that are specific to different tumour regions. Results: We found that spatially resolved gene signatures were strongly correlated with survival in patients with defined genetic mutations. Further in silico cell ontology analysis along with single-cell RNA sequencing data from resected glioblastoma tissue samples showed that these tumour regions had different gene signatures, whose expression was driven by different cell types in the regional tumour microenvironment. Our results further pointed to a key role for interactions between microglia/pericytes/monocytes and tumour cells that occur in the IT and CTmvp regions, which may contribute to poor patient survival. Conclusions: This work identified key histopathological features that correlate with patient survival and detected spatially associated genetic signatures that contribute to tumour-stroma interactions and which should be investigated as new targets in glioblastoma. The source codes and datasets used are available in GitHub: https://github.com/amin20/GBM_WSSM.Amin Zadeh Shirazi, Mark D. McDonnell, Eric Fornaciari, Narjes Sadat Bagherian, Kaitlin G. Scheer, Michael S. Samuel, Mahdi Yaghoobi, Rebecca J. Ormsby, Santosh Poonnoose, Damon J. Tumes, and Guillermo A. Gome

    Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification.

    Get PDF
    Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification

    The management of diabetic ketoacidosis in children

    Get PDF
    The object of this review is to provide the definitions, frequency, risk factors, pathophysiology, diagnostic considerations, and management recommendations for diabetic ketoacidosis (DKA) in children and adolescents, and to convey current knowledge of the causes of permanent disability or mortality from complications of DKA or its management, particularly the most common complication, cerebral edema (CE). DKA frequency at the time of diagnosis of pediatric diabetes is 10%–70%, varying with the availability of healthcare and the incidence of type 1 diabetes (T1D) in the community. Recurrent DKA rates are also dependent on medical services and socioeconomic circumstances. Management should be in centers with experience and where vital signs, neurologic status, and biochemistry can be monitored with sufficient frequency to prevent complications or, in the case of CE, to intervene rapidly with mannitol or hypertonic saline infusion. Fluid infusion should precede insulin administration (0.1 U/kg/h) by 1–2 hours; an initial bolus of 10–20 mL/kg 0.9% saline is followed by 0.45% saline calculated to supply maintenance and replace 5%–10% dehydration. Potassium (K) must be replaced early and sufficiently. Bicarbonate administration is contraindicated. The prevention of DKA at onset of diabetes requires an informed community and high index of suspicion; prevention of recurrent DKA, which is almost always due to insulin omission, necessitates a committed team effort

    Designing a broad-spectrum integrative approach for cancer prevention and treatment

    Get PDF
    Targeted therapies and the consequent adoption of "personalized" oncology have achieved notablesuccesses in some cancers; however, significant problems remain with this approach. Many targetedtherapies are highly toxic, costs are extremely high, and most patients experience relapse after a fewdisease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistantimmortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are notreliant upon the same mechanisms as those which have been targeted). To address these limitations, aninternational task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspectsof relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a widerange of high-priority targets (74 in total) that could be modified to improve patient outcomes. For thesetargets, corresponding low-toxicity therapeutic approaches were then suggested, many of which werephytochemicals. Proposed actions on each target and all of the approaches were further reviewed forknown effects on other hallmark areas and the tumor microenvironment. Potential contrary or procar-cinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixedevidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of therelationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. Thisnovel approach has potential to be relatively inexpensive, it should help us address stages and types ofcancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for futureresearch is offered

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Deep extreme learning machines: supervised autoencoding architecture for classification

    No full text
    We present a method for synthesising deep neural networks using Extreme Learning Machines (ELMs) as a stack of supervised autoencoders. We test the method using standard benchmark datasets for multi-class image classification (MNIST, CIFAR-10 and Google Streetview House Numbers (SVHN)), and show that the classification error rate can progressively improve with the inclusion of additional autoencoding ELM modules in a stack. Moreover, we found that the method can correctly classify up to 99.19% of MNIST test images, which surpasses the best error rates reported for standard 3-layer ELMs or previous deep ELM approaches when applied to MNIST. The approach simultaneously offers a significantly faster training algorithm to achieve its best performance (in the order of 5 min on a four-core CPU for MNIST) relative to a single ELM with the same total number of hidden units as the deep ELM, hence offering the best of both worlds: lower error rates and fast implementation.Migel D.Tissera and Mark D.McDonnel
    • 

    corecore