2,069 research outputs found

    Line versus Flux Statistics -- Considerations for the Low Redshift Lyman-alpha Forest

    Get PDF
    The flux/transmission power spectrum has become a popular statistical tool in studies of the high redshift (z>2z > 2) Lyman-alpha forest. At low redshifts, where the forest has thinned out into a series of well-isolated absorption lines, the motivation for flux statistics is less obvious. Here, we study the relative merits of flux versus line correlations, and derive a simple condition under which one is favored over the other on purely statistical grounds. Systematic errors probably play an important role in this discussion, and they are outlined as well.Comment: 6 pages, to appear in "The IGM/Galaxy Connection: The Distribution of Baryons at z=0", eds. J. L. Rosenberg and M. E. Putma

    Safe Beacon: A Bluetooth Based Solution to Monitor Egress of Dementia Sufferers within a Residential Setting

    Get PDF
    The global population is ageing, as a consequence of this there will be a greater incidence of ageing related illnesses which cause cognitive impairment–such as Alzheimer’s disease. Within residential care homes, such cognitive impairment can lead to wandering of individuals beyond the boundaries of safety provided. This wandering, particularly in urban areas can be life threatening. This study introduces a novel solution to detect, and alert caregivers of, egress of at-risk inhabitants of a care home. This solution operates through a combination of wearable Bluetooth beacons and beam-formed listening devices. In an evaluation process involving 275 egress events, this solution proved to offer accurate operation with no incidence of false positives. Notably, this solution has been deployed within a real residential care home environment for over 12 months. Proposed future work discusses improvements to this solution

    Statistical Inference of Selection and Divergence from a Time-Dependent Poisson Random Field Model

    Get PDF
    We apply a recently developed time-dependent Poisson random field model to aligned DNA sequences from two related biological species to estimate selection coefficients and divergence time. We use Markov chain Monte Carlo methods to estimate species divergence time and selection coefficients for each locus. The model assumes that the selective effects of non-synonymous mutations are normally distributed across genetic loci but constant within loci, and synonymous mutations are selectively neutral. In contrast with previous models, we do not assume that the individual species are at population equilibrium after divergence. Using a data set of 91 genes in two Drosophila species, D. melanogaster and D. simulans, we estimate the species divergence time (or 1.68 million years, assuming the haploid effective population size years) and a mean selection coefficient per generation . Although the average selection coefficient is positive, the magnitude of the selection is quite small. Results from numerical simulations are also presented as an accuracy check for the time-dependent model

    An Evaluation of the Precision of Measurement of Ryff’s Psychological Well-Being Scales in a Population Sample

    Get PDF
    The aim of this study is to assess the effective measurement range of Ryff’s Psychological Well-being scales (PWB). It applies normal ogive item response theory (IRT) methodology using factor analysis procedures for ordinal data based on a limited information estimation approach. The data come from a sample of 1,179 women participating in a midlife follow-up of a national birth cohort study in the UK. The PWB scales incorporate six dimensions: autonomy, positive relations with others, environmental mastery, personal growth, purpose in life and self-acceptance. Scale information functions were calculated to derive standard errors of measurement for estimated scores on each dimension. Construct variance was distinguished from method variance by inclusion of method factors from item wording (positive versus negative). Our IRT analysis revealed that the PWB measures well-being most accurately in the middle range of the score distribution, i.e. for women with average well-being. Score precision diminished at higher levels of well-being, and low well-being was measured more reliably than high well-being. A second-order well-being factor loaded by four of the dimensions achieved higher measurement precision and greater score accuracy across a wider range than any individual dimension. Future development of well-being scales should be designed to include items that are able to discriminate at high levels of well-being

    Microfluidic systems for the analysis of the viscoelastic fluid flow phenomena in porous media

    Get PDF
    In this study, two microfluidic devices are proposed as simplified 1-D microfluidic analogues of a porous medium. The objectives are twofold: firstly to assess the usefulness of the microchannels to mimic the porous medium in a controlled and simplified manner, and secondly to obtain a better insight about the flow characteristics of viscoelastic fluids flowing through a packed bed. For these purposes, flow visualizations and pressure drop measurements are conducted with Newtonian and viscoelastic fluids. The 1-D microfluidic analogues of porous medium consisted of microchannels with a sequence of contractions/ expansions disposed in symmetric and asymmetric arrangements. The real porous medium is in reality, a complex combination of the two arrangements of particles simulated with the microchannels, which can be considered as limiting ideal configurations. The results show that both configurations are able to mimic well the pressure drop variation with flow rate for Newtonian fluids. However, due to the intrinsic differences in the deformation rate profiles associated with each microgeometry, the symmetric configuration is more suitable for studying the flow of viscoelastic fluids at low De values, while the asymmetric configuration provides better results at high De values. In this way, both microgeometries seem to be complementary and could be interesting tools to obtain a better insight about the flow of viscoelastic fluids through a porous medium. Such model systems could be very interesting to use in polymer-flood processes for enhanced oil recovery, for instance, as a tool for selecting the most suitable viscoelastic fluid to be used in a specific formation. The selection of the fluid properties of a detergent for cleaning oil contaminated soil, sand, and in general, any porous material, is another possible application
    corecore