47 research outputs found
Movement and habitat ecology of protected species in North Carolina
Reptiles and amphibians are declining worldwide, especially from global climate change and habitat loss and fragmentation. Conservation efforts for imperiled species usually involve habitat protection, but are only effective if biologists and land managers have a thorough understanding of a species’ habitat requirements. This prerequisite knowledge is complicated for many herpetofauna because they utilize different habitats throughout their lifetime, such as separate breeding and non breeding habitats. Thus, multiple habitats must be studied and protected for conservation to be successful. This research aimed to better understand the habitat ecology of two protected herpetofaunal species in North Carolina to enhance future conservation. The first species, mountain chorus frogs (Pseudacris brachyphona), are small, terrestrial frogs, and a state species of special concern. Like many amphibians their breeding habitat has been studied, but little is known about their post breeding habitat. Nineteen individuals from two breeding sites were tracked by radio telemetry for approximately 25 days as they left their breeding site to examine their post breeding habitat. Breeding pools were surrounded closely by field and orchard habitats, and more distantly by forest. Frogs traveled 11.4 475.6 m from their breeding site, and no macrohabitat selection was detected among available habitats. However, the majority of individuals from the breeding site nearest the forest entered the forest, and the farthest traveling individuals from the other breeding site did as well. Mountain chorus frogs likely continued moving after 25 days, and were selecting forest habitat. I measured percent cover of vegetation within 1 m2 plots in all habitats, and forest had significantly greater leaf litter and canopy cover than did field and orchard. Likewise, there were significantly more burrows available in the forest than in other habitats. These habitat characteristics would provide greater protection from predators and desiccation in the forest, which could explain preference for forest. The second species studied, the bog turtle (Glyptemys muhlenbergii), is a small freshwater species, that is both federally- and state threatened. The majority of its habitat in the southeastern United States is small wetlands in livestock pastures, dominated by emergent vegetation (rushes and sedges) and with little shrub and canopy cover. I followed the movements of six turtles using radio telemetry from May October 2015 in a unique bog turtle wetland. This site is in Nantahala National Forest, has likely had little human disturbance for 80 years, and approximately half of the wetland is shrub/scrub habitat. Resident turtles significantly preferred shrub/scrub habitat with 68% of locations within this habitat type. I located two nests, both in emergent habitat. Shrub/scrub had significantly greater abundance of deep mud, which could explain turtles’ preference for this habitat. Bog turtles frequently burrow down into mud, and deeper mud might be easier to move through. Females had greater mean daily movement rates and home ranges (8.3 m/day, 0.6064 ha) than males (5.0 m/day, 0.4458 ha), which might be due to nesting migrations to emergent habitat. Thus, bog turtles will utilize shrub/scrub habitat where available, but nest in emergent habitat, likely due to its better thermal environment for offspring development
Extended scaling relations for planar lattice models
It is widely believed that the critical properties of several planar lattice
models, like the Eight Vertex or the Ashkin-Teller models, are well described
by an effective Quantum Field Theory obtained as formal scaling limit. On the
basis of this assumption several extended scaling relations among their indices
were conjectured. We prove the validity of some of them, among which the ones
by Kadanoff, [K], and by Luther and Peschel, [LP].Comment: 32 pages, 7 fi
HOXA1 is overexpressed in oral squamous cell carcinomas and its expression is correlated with poor prognosis
<p>Abstract</p> <p>Background</p> <p>HOX genes encode homeodomain-containing transcription factors involved in the regulation of cellular proliferation and differentiation during embryogenesis. However, members of this family demonstrated oncogenic properties in some malignancies. The present study investigated whether genes of the HOXA cluster play a role in oral cancer.</p> <p>Methods</p> <p>In order to identify differentially expressed HOXA genes, duplex RT-PCR in oral samples from healthy mucosa and squamous cell carcinoma was used. The effects of HOXA1 on proliferation, apoptosis, adhesion, invasion, epithelial-mesenchymal transition (EMT) and anchorage-independent growth were assessed in cells with up- and down-regulation of HOXA1. Immunohistochemical analysis using a tissue microarray (TMA) containing 127 oral squamous cell carcinomas (OSCC) was performed to determine the prognostic role of HOXA1 expression.</p> <p>Results</p> <p>We showed that transcripts of HOXA genes are more abundant in OSCC than in healthy oral mucosa. In particular, HOXA1, which has been described as one of the HOX members that plays an important role in tumorigenesis, was significantly more expressed in OSCCs compared to healthy oral mucosas. Further analysis demonstrated that overexpression of HOXA1 in HaCAT human epithelial cells promotes proliferation, whereas downregulation of HOXA1 in human OSCC cells (SCC9 cells) decreases it. Enforced HOXA1 expression in HaCAT cells was not capable of modulating other events related to tumorigenesis, including apoptosis, adhesion, invasion, EMT and anchorage-independent growth. A high number of HOXA1-positive cells was significantly associated with T stage, N stage, tumor differentiation and proliferative potential of the tumors, and was predictive of poor survival. In multivariate analysis, HOXA1 was an independent prognostic factor for OSCC patients (HR: 2.68; 95% CI: 1.59-2.97; p = 0.026).</p> <p>Conclusion</p> <p>Our findings indicate that HOXA1 may contribute to oral carcinogenesis by increasing tumor cell proliferation, and suggest that HOXA1 expression might be helpful as a prognostic marker for patients with OSCC.</p
Like Will to Like: Abundances of Closely Related Species Can Predict Susceptibility to Intestinal Colonization by Pathogenic and Commensal Bacteria
The intestinal ecosystem is formed by a complex, yet highly characteristic microbial community. The parameters defining whether this community permits invasion of a new bacterial species are unclear. In particular, inhibition of enteropathogen infection by the gut microbiota ( = colonization resistance) is poorly understood. To analyze the mechanisms of microbiota-mediated protection from Salmonella enterica induced enterocolitis, we used a mouse infection model and large scale high-throughput pyrosequencing. In contrast to conventional mice (CON), mice with a gut microbiota of low complexity (LCM) were highly susceptible to S. enterica induced colonization and enterocolitis. Colonization resistance was partially restored in LCM-animals by co-housing with conventional mice for 21 days (LCMcon21). 16S rRNA sequence analysis comparing LCM, LCMcon21 and CON gut microbiota revealed that gut microbiota complexity increased upon conventionalization and correlated with increased resistance to S. enterica infection. Comparative microbiota analysis of mice with varying degrees of colonization resistance allowed us to identify intestinal ecosystem characteristics associated with susceptibility to S. enterica infection. Moreover, this system enabled us to gain further insights into the general principles of gut ecosystem invasion by non-pathogenic, commensal bacteria. Mice harboring high commensal E. coli densities were more susceptible to S. enterica induced gut inflammation. Similarly, mice with high titers of Lactobacilli were more efficiently colonized by a commensal Lactobacillus reuteri RR strain after oral inoculation. Upon examination of 16S rRNA sequence data from 9 CON mice we found that closely related phylotypes generally display significantly correlated abundances (co-occurrence), more so than distantly related phylotypes. Thus, in essence, the presence of closely related species can increase the chance of invasion of newly incoming species into the gut ecosystem. We provide evidence that this principle might be of general validity for invasion of bacteria in preformed gut ecosystems. This might be of relevance for human enteropathogen infections as well as therapeutic use of probiotic commensal bacteria
Patient-derived xenograft (PDX) models in basic and translational breast cancer research
Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
Distinguishing the Origin of Asteroid (16) Psyche
International audienceThe asteroid (16) Psyche may be the metal-rich remnant of a differentiated planetesimal, or it may be a highly reduced, metal-rich asteroidal material that never differentiated. The NASA Psyche mission aims to determine Psyche's provenance. Here we describe the possible solar system regions of origin for Psyche, prior to its likely implantation into the asteroid belt, the physical and chemical processes that can enrich metal in an asteroid, and possible meteoritic analogs. The spacecraft payload is designed to be able to discriminate among possible formation theories. The project will determine Psyche's origin and formation by measuring any strong remanent magnetic fields, which would imply it was the core of a differentiated body; the scale of metal to silicate mixing will be determined by both the neutron spectrometers and the filtered images; the degree of disruption between metal and rock may be determined by the correlation of gravity with composition; some mineralogy (e.g., modeled silicate/metal ratio, and inferred existence of low-calcium pyroxene or olivine, for example) will be detected using filtered images; and the nickel content of Psyche's metal phase will be measured using the GRNS