5,129 research outputs found

    Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells

    Get PDF
    We report a model describing the molecular orientation disorder in CH3NH3PbI3, solving a classical Hamiltonian parametrised with electronic structure calculations, with the nature of the motions informed by ab-initio molecular dynamics. We investigate the temperature and static electric field dependence of the equilibrium ferroelectric (molecular) domain structure and resulting polarisability. A rich domain structure of twinned molecular dipoles is observed, strongly varying as a function of temperature and applied electric field. We propose that the internal electrical fields associated with microscopic polarisation domains contribute to hysteretic anomalies in the current--voltage response of hybrid organic-inorganic perovskite solar cells due to variations in electron-hole recombination in the bulk.Comment: 10 pages; 4 figures, 2 SI figure

    ‘‘There’s so much more to it than what I initially thought’’: Stepping into researchers’ shoes with a class activity in a first year psychology survey course

    Get PDF
    In psychology, it is widely agreed that research methods, although central to the discipline, are particularly challenging to learn and teach, particularly at introductory level. This pilot study explored the potential of embedding a student-conducted research activity in a one-semester undergraduate Introduction to Psychology survey course, with the aims of (a) engaging students with the topic of research methods; (b) developing students’ comprehension and application of research methods concepts; and (c) building students’ ability to link research with theory. The research activity explored shoe ownership, examining gender differences and relationships with age, and linking to theories of gender difference and of consumer identity. The process of carrying out the research and reflecting on it created a contextualized, active learning environment in which students themselves raised many issues that research methods lectures seek to cover. Students also wrote richer assignments than standard first year mid-term essay

    Radiation Damage and Activation from Proton Irradiation of Advanced Scintillators

    Get PDF
    We present results from a proton accelerator beam test to measure radiation damage and activation in advanced scintillator materials. Samples of LaBr3:Ce and LaCl3:Ce were exposed to protons from 40-250 MeV at the Proton Irradiation Facility of the Paul Scherrer Institute in Switzerland. Twelve energy bands were used to simulate the spectrum of the South Atlantic Anomaly (SAA), with different samples exposed to the equivalent of 4 months, 1 year, and 5 years of SAA passage. No significant decrease in light output was found due to radiation damage, indicating that these new scintillator materials are radiation tolerant. High-resolution spectra of the samples were obtained before and after irradiation with a Germanium spectrometer to study activation. We present a detailed analysis of these spectra and a discussion of the suitability of these scintillator materials for detectors in future space missions

    COMPTEL upper limits for Seyfert galaxies

    Get PDF
    The gamma‐ray emission of Seyfert galaxies has fallen far short of pre‐GRO expectations. No single object of this class has been detected by either COMPTEL or EGRET, and OSSE has detected only a fraction of the Seyferts expected. To derive a more stringent upper limit to the emission from these objects in the energy ranges 0.75 to 1 and 1 to 3 MeV, we have summed a large number of COMPTEL observations acquired during Phase 1 of the GRO mission. From a total of 47 observations of 23 individual X‐ray selected Seyfert galaxies, we derive preliminary upper limits of 8×10−8 photons/(cm2 s keV) in the 0.75‐1 MeV band and 1×10−8 photons/(cm2 s keV) in the 1‐3 MeV band

    TartanSW : filling the information gap in standing wave microscopy

    Get PDF
    Widefield standing wave microscopy has been shown to provide axial resolutions below 100 nm that can be acquired at up to 100 frames per second with the only change to the imaging setup being there placement of a standard microscope slide with a first surface reflector[1,2]. However, because this technique makes use of the interaction between a fluorescent specimen and the antinodal planes of an optical standing wave to achieve axial super-resolution the nodal plane contributions result in ~50% of the specimen not being imaged. We present a method called TartanSW which makes use of standing waves of different wavelengths to shift the antinodal plane axial locations and hence reduce the amount of missing axial information in the mage

    Nonsolar astronomy with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

    Get PDF
    The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is a NASA Small Explorer satellite designed to study hard x-ray and gamma-ray emission from solar flares. In addition, its high-resolution array of germanium detectors can see photons from high-energy sources throughout the Universe. Here we discuss the various algorithms necessary to extract spectra, lightcurves, and other information about cosmic gamma-ray bursts, pulsars, and other astrophysical phenomena using an unpointed, spinning array of detectors. We show some preliminary results and discuss our plans for future analyses. All RHESSI data are public, and scientists interested in participating should contact the principal author

    Rotational Brownian motion on the sphere surface and rotational relaxation

    Full text link
    The spatial components of the autocorrelation function of noninteracting dipoles are analytically obtained in terms of rotational Brownian motion on the surface of a unit sphere using multi-level jumping formalism based on Debye's rotational relaxation model, and the rotational relaxation functions are evaluated.Comment: RevTex, 4 pages, submitted to Chin. Phys. Let

    A 340/380 nm light emitting diode illuminator for Fura-2 AM ratiometric Ca2+ imaging of live cells with better than 5 nM precision

    Get PDF
    We report the first demonstration of a fast wavelength-switchable 340/380 nm light emitting diode (LED) illuminator for Fura-2 ratiometric Ca2+ imaging of live cells. The LEDs closely match the excitation peaks of bound and free Fura-2 and enables the precise detection of cytosolic Ca2+ concentrations, which is only limited by the Ca2+ response of Fura-2. Using this illuminator, we have shown that Fura-2 acetoxymethyl ester (AM) concentrations as low as 250 nM can be used to detect induced Ca2+ events in tsA-201 cells and while utilizing the 150 µs switching speeds available, it was possible to image spontaneous Ca2+ transients in hippocampal neurons at a rate of 24.39 Hz that were blunted or absent at typical 0.5 Hz acquisition rates. Overall, the sensitivity and acquisition speeds available using this LED illuminator significantly improves the temporal resolution that can be obtained in comparison to current systems and supports optical imaging of fast Ca2+ events using Fura-2

    Anomalous Rotational Relaxation: A Fractional Fokker-Planck Equation Approach

    Full text link
    In this study we obtained analytically relaxation function in terms of rotational correlation functions based on Brownian motion for complex disordered systems in a stochastic framework. We found out that rotational relaxation function has a fractional form for complex disordered systems, which indicates relaxation has non-exponential character obeys to Kohlrausch-William-Watts law, following the Mittag-Leffler decay.Comment: Revtex4, 9 pages. Paper was revised. References adde
    corecore