221 research outputs found

    Finite-Difference Solutions of the Alternate Turbopump Development High-Pressure Oxidizer Turbopump Pump-End Ball-Bearing Cavity Flows

    Get PDF
    These analyses were undertaken to aid in the understanding of flow phenomena in the Alternate Turbopump Development (ATD) High-pressure Oxidizer Turbopump (HPOTP) Pump-end ball bearing (PEBB) cavities and their roles in turbopump vibration initiation and bearing distress. This effort was being performed to provide timely support to the program in a decision as to whether or not the program should be continued. In the first case, it was determined that a change in bearing through flow had no significant effect on axial preload. This was a follow-on to a previous study which had resulted in a redesign of the bearing exit cavity which virtually eliminated bearing axial loading. In the second case, a three-dimensional analysis of the inner-race-guided cage configuration was performed so as to determine the pressure distribution on the outer race when the shaft is 0.0002 inches off-center. The results indicate that there is virtually no circumferential pressure difference caused by the offset to contribute to bearing tilt. In the third case, axisymmetric analyses were performed on an outer-race guided cage configuration to determine the magnitude of tangential flow entering the bearing. The removed-shoulder case was analyzed as was the static diverter case. A third analysis where the preload spring was shielded by a sheet of metal for the baseline case was also performed. It was determined that the swirl entering the bearing was acceptable and the project decided to use the outer-race-guided cage configuration. In the fourth case, more bearing configurations were analyzed. These analyses included thermal modeling so as to determine the added benefit of injecting colder fluid directly onto the bearing inner-race contact area. The results of these analyses contributed to a programmatic decision to include coolant injection in the design

    Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bajnai, D., Guo, W., Spötl, C., Coplen, T. B., Methner, K., Löffler, N., Krsnik, E., Gischler, E., Hansen, M., Henkel, D., Price, G. D., Raddatz, J., Scholz, D., & Fiebig, J. Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures. Nature Communications, 11(1), (2020): 4005, doi:10.1038/s41467-020-17501-0.Surface temperature is a fundamental parameter of Earth’s climate. Its evolution through time is commonly reconstructed using the oxygen isotope and the clumped isotope compositions of carbonate archives. However, reaction kinetics involved in the precipitation of carbonates can introduce inaccuracies in the derived temperatures. Here, we show that dual clumped isotope analyses, i.e., simultaneous ∆47 and ∆48 measurements on the single carbonate phase, can identify the origin and quantify the extent of these kinetic biases. Our results verify theoretical predictions and evidence that the isotopic disequilibrium commonly observed in speleothems and scleractinian coral skeletons is inherited from the dissolved inorganic carbon pool of their parent solutions. Further, we show that dual clumped isotope thermometry can achieve reliable palaeotemperature reconstructions, devoid of kinetic bias. Analysis of a belemnite rostrum implies that it precipitated near isotopic equilibrium and confirms the warmer-than-present temperatures during the Early Cretaceous at southern high latitudes.This work became possible through DFG grant “INST 161/871-1” and the Investment in Science Fund at Woods Hole Oceanographic Institution. The authors would like to thank Sven Hofmann and Manuel Schumann for their assistance in the joint Goethe University – Senckenberg BiK-F Stable Isotope Facility at the Institute of Geosciences, Goethe University Frankfurt. K.M. acknowledges funding through “DFG ME 4955/1-1”, E.K. through “DFG MU 2845/6-1”, D.S. through “DFG SCHO 1274/8-1” and “DFG SCHO 1274/11-1”, and M.H. through “DFG HA 8694/1-1”. C.S. acknowledges funding from the University of Innsbruck. A review of the manuscript by David Evans on behalf of the USGS is acknowledged

    Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: molecular mechanisms and physiological consequences

    Get PDF
    Plants can use ammonium (NH4+) as the sole nitrogen source, but at high NH4+ concentrations in the root medium, particularly in combination with a low availability of K+, plants suffer from NH4+ toxicity. To understand the role of K+ transporters and non-selective cation channels in K+/NH4+ interactions better, growth, NH4+ and K+ accumulation and the specific fluxes of NH4+, K+, and H+ were examined in roots of barley (Hordeum vulgare L.) and Arabidopsis seedlings. Net fluxes of K+ and NH4+ were negatively correlated, as were their tissue concentrations, suggesting that there is direct competition during uptake. Pharmacological treatments with the K+ transport inhibitors tetraethyl ammonium (TEA+) and gadolinium (Gd3+) reduced NH4+ influx, and the addition of TEA+ alleviated the NH4+-induced depression of root growth in germinating Arabidopsis plants. Screening of a barley root cDNA library in a yeast mutant lacking all NH4+ and K+ uptake proteins through the deletion of MEP1–3 and TRK1 and TRK2 resulted in the cloning of the barley K+ transporter HvHKT2;1. Further analysis in yeast suggested that HvHKT2;1, AtAKT1, and AtHAK5 transported NH4+, and that K+ supplied at increasing concentrations competed with this NH4+ transport. On the other hand, uptake of K+ by AtHAK5, and to a lesser extent via HvHKT2;1 and AtAKT1, was inhibited by increasing concentrations of NH4+. Together, the results of this study show that plant K+ transporters and channels are able to transport NH4+. Unregulated NH4+ uptake via these transporters may contribute to NH4+ toxicity at low K+ levels, and may explain the alleviation of NH4+ toxicity by K+

    Preliminary study on the utilization of Ca2+ and HCO3 − in karst water by different sources of Chlorella vulgaris

    Get PDF
    This article aims to present a picture of how a university discipline has been created in Lithuania, given the background of changes caused by the Lithuania’s emancipation from the Soviet Union. The theoretical frame of reference is provided by a modified model of Bronfenbrenners developmental ecology. Data collection has primarily been in the form of interviews with university staff from Lithuanian institutions for higher education. In addition to the interviews, literature lists, course schedules and other key documents have been collected and analysed. The analysis focuses on individual’s conceptualisation of three main areas. The study demonstrates how the creation of management and economics as a university discipline in Lithuania has been formed by a combination of political/ideological, economic, institutional and individual factors. One of the study’s main contributions is to highlight the significance of the concept of academic freedom and to focus on the paradox, where constraint under the old system is replaced by another form of constraint. In this case, where the rigidity of the old Soviet doctrine is replaced by a new freedom; but instead of being given greater opportunities to influence and change the subject, the academic staff are forced into a position where, once again they are subjugated to the influences of international sources

    Three monthly coral Sr/Ca records from the Chagos Archipelago covering the period of 1950-1995 A.D.: reproducibility and implications for quantitative reconstructions of sea surface temperature variations

    Get PDF
    In order to assess the fidelity of coral Sr/Ca for quantitative reconstructions of sea surface temperature variations, we have generated three monthly Sr/Ca time series from Porites corals from the lagoon of Peros Banhos (71°E, 5°S, Chagos Archipelago). We find that all three coral Sr/Ca time series are well correlated with instrumental records of sea surface temperature (SST) and air temperature. However, the intrinsic variance of the single-core Sr/Ca time series differs from core to core, limiting their use for quantitative estimates of past temperature variations. Averaging the single-core data improves the correlation with instrumental temperature (r > 0.7) and allows accurate estimates of interannual temperature variations (~0.35°C or better). All Sr/Ca time series indicate a shift towards warmer temperatures in the mid-1970s, which coincides with the most recent regime shift in the Pacific Ocean. However, the magnitude of the warming inferred from coral Sr/Ca differs from core to core and ranges from 0.26 to 0.75°C. The composite Sr/Ca record from Peros Banhos clearly captures the major climatic signals in the Indo-Pacific Ocean, i.e. the El Niño–southern oscillation and the Pacific decadal oscillation. Moreover, composite Sr/Ca is highly correlated with tropical mean temperatures (r = 0.7), suggesting that coral Sr/Ca time series from the tropical Indian Ocean will contribute to multi-proxy reconstructions of tropical mean temperatures

    Choosing best practices for managing impacts of trawl fishing on seabed habitats and biota

    Get PDF
    Bottom trawling accounts for almost one quarter of global fish landings but may also have significant and unwanted impacts on seabed habitats and biota. Management measures and voluntary industry actions can reduce these impacts, helping to meet sustainability objectives for fisheries, conservation and environmental management. These include changes in gear design and operation of trawls, spatial controls, impact quotas and effort controls. We review nine different measures and actions and use published studies anda simple conceptual model to evaluate and compare their performance. The risks and benefits of these management measures depend on the extent to which the fishery is already achieving management objectives for target stocks and the characteristics of the management system that is already in place. We offer guidance on identifying best practices for trawl-fisheries management and show that best practices and their likelihood of reducing trawling impacts depend on local, national and regional management objectives and priorities, societal values and resources for implementation. There is no universalbest practice, and multiple management measures and industry actions are required to meet sustainability objectives and improve trade-offs between food production and environmental protection

    Rapid Environmental Change over the Past Decade Revealed by Isotopic Analysis of the California Mussel in the Northeast Pacific

    Get PDF
    The anthropogenic input of fossil fuel carbon into the atmosphere results in increased carbon dioxide (CO2) into the oceans, a process that lowers seawater pH, decreases alkalinity and can inhibit the production of shell material. Corrosive water has recently been documented in the northeast Pacific, along with a rapid decline in seawater pH over the past decade. A lack of instrumentation prior to the 1990s means that we have no indication whether these carbon cycle changes have precedence or are a response to recent anthropogenic CO2 inputs. We analyzed stable carbon and oxygen isotopes (δ13C, δ18O) of decade-old California mussel shells (Mytilus californianus) in the context of an instrumental seawater record of the same length. We further compared modern shells to shells from 1000 to 1340 years BP and from the 1960s to the present and show declines in the δ13C of modern shells that have no historical precedent. Our finding of decline in another shelled mollusk (limpet) and our extensive environmental data show that these δ13C declines are unexplained by changes to the coastal food web, upwelling regime, or local circulation. Our observed decline in shell δ13C parallels other signs of rapid changes to the nearshore carbon cycle in the Pacific, including a decline in pH that is an order of magnitude greater than predicted by an equilibrium response to rising atmospheric CO2, the presence of low pH water throughout the region, and a record of a similarly steep decline in δ13C in algae in the Gulf of Alaska. These unprecedented changes and the lack of a clear causal variable underscores the need for better quantifying carbon dynamics in nearshore environments

    Live Tissue Imaging Shows Reef Corals Elevate pH under Their Calcifying Tissue Relative to Seawater

    Get PDF
    The threat posed to coral reefs by changes in seawater pH and carbonate chemistry (ocean acidification) raises the need for a better mechanistic understanding of physiological processes linked to coral calcification. Current models of coral calcification argue that corals elevate extracellular pH under their calcifying tissue relative to seawater to promote skeleton formation, but pH measurements taken from the calcifying tissue of living, intact corals have not been achieved to date. We performed live tissue imaging of the reef coral Stylophora pistillata to determine extracellular pH under the calcifying tissue and intracellular pH in calicoblastic cells. We worked with actively calcifying corals under flowing seawater and show that extracellular pH (pHe) under the calicoblastic epithelium is elevated by ∼0.5 and ∼0.2 pH units relative to the surrounding seawater in light and dark conditions respectively. By contrast, the intracellular pH (pHi) of the calicoblastic epithelium remains stable in the light and dark. Estimates of aragonite saturation states derived from our data indicate the elevation in subcalicoblastic pHe favour calcification and may thus be a critical step in the calcification process. However, the observed close association of the calicoblastic epithelium with the underlying crystals suggests that the calicoblastic cells influence the growth of the coral skeleton by other processes in addition to pHe modification. The procedure used in the current study provides a novel, tangible approach for future investigations into these processes and the impact of environmental change on the cellular mechanisms underpinning coral calcification
    corecore