6,280 research outputs found
A signal analysis investigation of brainstem auditory evoked potentials
Imperial Users onl
Atom lithography using MRI-type feature placement
We demonstrate the use of frequency-encoded light masks in neutral atom
lithography. We demonstrate that multiple features can be patterned across a
monotonic potential gradient. Features as narrow as 0.9 microns are fabricated
on silicon substrates with a metastable argon beam. Internal state manipulation
with such a mask enables continuously adjustable feature positions and feature
densities not limited by the optical wavelength, unlike previous light masks.Comment: 4 pages, 4 figure
GaAs monolithic frequency doublers with series connected varactor diodes
GaAs monolithic frequency doublers using series connected varactor diodes have been fabricated for the first time. Output powers of 150 mW at 36.9 GHz with 24% efficiency and 300 mW at 24.8 GHz with 18% efficiency have been obtained. Peak efficiencies of 35% at output power levels near 100 mW have been achieved at both frequencies. Both K-band and Ka-band frequency doublers are derived from a lower power, single-diode design by series connection of two diodes and scaling to achieve different power and frequency specifications. Their fabrication was accomplished using the same process sequence
Progress in GaAs/CuInSe2 tandem junction solar cells
Much more power is required for spacecraft of the future than current vehicles. To meet this increased demand for power while simultaneously meeting other requirements for launch, deployment, and maneuverability, the development of higher-efficiency, lighter-weight, and more radiation resistant photovoltaic cells is essential. Mechanically stacked tandem junction solar cells based on (AlGaAs)GaAs thin film CLEFT (Cleavage of Lateral Epitaxial Film for Transfer) top cells and CuInSe2(CIS) thin film bottom cells are being developed to meet these power needs. The mechanically stacked tandem configuration is chosen due to its interconnect flexibility allowing more efficient array level performance. It also eliminates cell fabrication processing constraints associated with monolithically integrated multi-junction approaches, thus producing higher cell fabrication yields. The GaAs cell is used as the top cell due to its demonstrated high efficiency, and good radiation resistance. Furthermore, it offers a future potential for bandgap tuning using AlGaAs as the absorber to maximize cell performance. The CuInSe2 cell is used as the bottom cell due to superb radiation resistance, stability, and optimal bandgap value in combination with an AlGaAs top cell. Since both cells are incorporated as thin films, this approach provides a potential for very high specific power. This high specific power (W/kg), combined with high power density (W/sq m) resulting from the high efficiency of this approach, makes these cells ideally suited for various space applications
Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms
Laser cooling on weak transitions is a useful technique for reaching
ultracold temperatures in atoms with multiple valence electrons. However, for
strongly magnetic atoms a conventional narrow-line magneto-optical trap (MOT)
is destabilized by competition between optical and magnetic forces. We overcome
this difficulty in Er by developing an unusual narrow-line MOT that balances
optical and magnetic forces using laser light tuned to the blue side of a
narrow (8 kHz) transition. The trap population is spin-polarized with
temperatures reaching below 2 microkelvin. Our results constitute an
alternative method for laser cooling on weak transitions, applicable to
rare-earth-metal and metastable alkaline earth elements.Comment: To appear in Phys. Rev. Lett. 4 pages, 5 figure
Binary Population and Spectral Synthesis Version 2.1: construction, observational verification and new results
The Binary Population and Spectral Synthesis (BPASS) suite of binary stellar
evolution models and synthetic stellar populations provides a framework for the
physically motivated analysis of both the integrated light from distant stellar
populations and the detailed properties of those nearby. We present a new
version 2.1 data release of these models, detailing the methodology by which
BPASS incorporates binary mass transfer and its effect on stellar evolution
pathways, as well as the construction of simple stellar populations. We
demonstrate key tests of the latest BPASS model suite demonstrating its ability
to reproduce the colours and derived properties of resolved stellar
populations, including well- constrained eclipsing binaries. We consider
observational constraints on the ratio of massive star types and the
distribution of stellar remnant masses. We describe the identification of
supernova progenitors in our models, and demonstrate a good agreement to the
properties of observed progenitors. We also test our models against photometric
and spectroscopic observations of unresolved stellar populations, both in the
local and distant Universe, finding that binary models provide a
self-consistent explanation for observed galaxy properties across a broad
redshift range. Finally, we carefully describe the limitations of our models,
and areas where we expect to see significant improvement in future versions.Comment: 69 pages, 45 figures. Accepted for publication in PASA. Accompanied
by a full, documented data release at http://bpass.auckland.ac.nz and
http://warwick.ac.uk/bpas
Understanding student satisfaction and dissatisfaction: An interpretive study in the UK Higher Education Context
This article represents a cross-sectional study of undergraduate students across two North West University Business Schools in the UK. A purposefully designed questionnaire was collected from 350 students. The student experience was described in the form of hand written narratives by first and final year students and had been identified by the respondents themselves as being satisfying or dissatisfying with the areas of teaching and learning and the supporting service environment. The study also assessed whether their experiences were likely to influence their loyalty behaviours with respect to remaining on their chosen course of study; recommending the university; and continuing at a higher level of study. The data was captured and analysed using the qualitative critical incident technique to capture the voice of the student and identified the critical determinants of quality within Higher Education, i.e. those areas that would influence loyalty behaviour, as being Access; Attentiveness; Availability; and Communication. A number of new determinants of quality have been identified out of the research by three independent judges, namely motivation, reward, social inclusion, usefulness, value for money and fellow student behaviour
- …