62 research outputs found

    The role of orthobiologics in hip preservation surgery.

    Get PDF
    The potential regenerative role of different orthobiologics is becoming more recognized for the treatment of chronic and degenerative musculoskeletal conditions. Over the last few years there has been an increasing number of publications on cell therapy and other orthobiologics for the treatment of avascular necrosis of the femoral head and other hip conditions with promising short-term clinical results. In this article, we have used a systematic search of the literature to identify potentially relevant topics on orthobiologics and then selected those most applicable to hip preservation surgery. We identified several innovative strategies and present a summary of the currently available evidence on their potential role in hip preservation surgery. For many of these treatment strategies there was a lack of clinical evidence and therefore we suggest that there is a need for comparative studies in this field

    Targeted protein delivery: carbodiimide crosslinking influences protein release from microparticles incorporated within collagen scaffolds

    Get PDF
    open access articleTissue engineering response may be tailored via controlled, sustained release of active agents from protein-loaded degradable microparticles incorporated directly within three-dimensional (3D) ice-templated collagen scaffolds. However, the effects of covalent crosslinking during scaffold preparation on the availability and release of protein from the incorporated microparticles have not been explored. Here, we load 3D ice-templated collagen scaffolds with controlled additions of poly-(DL-lactide-co-glycolide) microparticles. We probe the effects of subsequent N-(3-dimethylaminopropyl)- N0-ethylcarbodiimide hydrochloride crosslinking on protein release, using microparticles with different internal protein distributions. Fluorescein isothiocyanate labelled bovine serum albumin is used as a model protein drug. The scaffolds display a homogeneous microparticle distribution, and a reduction in pore size and percolation diameter with increased microparticle addition, although these values did not fall below those reported as necessary for cell invasion. The protein distribution within the microparticles, near the surface or more deeply located within the microparticles, was important in determining the release profile and effect of crosslinking, as the surface was affected by the carbodiimide crosslinking reaction applied to the scaffold. Crosslinking of microparticles with a high proportion of protein at the surface caused both a reduction and delay in protein release. Protein located within the bulk of the microparticles, was protected from the crosslinking reaction and no delay in the overall release profile was seen

    Bone density of the femoral neck following Birmingham hip resurfacing: A 2-year prospective study in 27 hips

    Get PDF
    Background Resurfacing is a popular alternative to a standard hip replacement in young arthritic patients. Despite bone preservation around the femoral component, there is little information regarding the bone quality

    Peripheral mononuclear blood cell apheresis in a preclinical ovine model.

    Get PDF
    Background. Recent research has demonstrated that circulating peripheral blood mononuclear fractions (PBMC) containing haematopoietic stem (HSC)/progenitor cells have the potential to play a crucial role in regenerative medicine strategies. Work in our laboratory has shown that a peripheral blood mononuclear cell fraction (PBMC) enhances cartilage repair in an osteochondral defect model in sheep and has a significant effect on cells in the joint niche. In order to obtain PBMC rich blood containing HSCs for further studies, we have performed, for the first time, apheresis on adult sheep. Results. Subcutaneous granulocyte-colony stimulating factor (G-CSF) was used to mobilise white blood cells and continual flow apheresis was performed on 8 sheep under general anaesthetic. There were no observable side effects, although a marked tendency for blood clotting during the procedure was noted. The administration of G-CSF for 3 days increased the white blood cell (WBC) count in the peripheral blood from to 6.7 ± 2.1 x 106/ml to 16.1 ± 5.0 x 106/ml. Following apheresis, the WBC numbers in the apheretic product increased to 38.5 ± 27.6 x 106/ml, comprised of a significant increase in neutrophils and PBMC (from 5.25 ± 1.8 x 106/ml following G-CSF stimulation to 27.5 5 ± 27.6 x 106/ml). There was a mean of 2.1% CD34+ve cells and 95.5% CD45+ve cells in the apheretic product Conclusions. This study describes the administration of G-CSF and subsequent apheresis in adult sheep. The technique is safe when performed as described with no observable side effects. The technique permits collection of an increased WBC fraction containing neutrophils and PBMC in adult sheep. This apheretic product contains CD34+ve cells, representing an HSC/progenitor population for use in in vivo and in vitro experiments

    Human osteoblasts obtained from distinct periarticular sites demonstrate differences in biological function in vitro.

    Get PDF
    AIMS: Accumulated evidence indicates that local cell origins may ingrain differences in the phenotypic activity of human osteoblasts. We hypothesized that these differences may also exist in osteoblasts harvested from the same bone type at periarticular sites, including those adjacent to the fixation sites for total joint implant components. METHODS: Human osteoblasts were obtained from the acetabulum and femoral neck of seven patients undergoing total hip arthroplasty (THA) and from the femoral and tibial cuts of six patients undergoing total knee arthroplasty (TKA). Osteoblasts were extracted from the usually discarded bone via enzyme digestion, characterized by flow cytometry, and cultured to passage three before measurement of metabolic activity, collagen production, alkaline phosphatase (ALP) expression, and mineralization. RESULTS: Osteoblasts from the acetabulum showed lower proliferation (p = 0.034), cumulative collagen release (p < 0.001), and ALP expression (p = 0.009), and produced less mineral (p = 0.006) than those from the femoral neck. Osteoblasts from the tibia produced significantly less collagen (p = 0.021) and showed lower ALP expression than those from the distal femur. CONCLUSION: We have demonstrated for the first time an anatomical regional variation in the biological behaviours of osteoblasts on either side of the hip and knee joint. The lower osteoblast proliferation, matrix production, and mineralization from the acetabulum compared to those from the proximal femur may be reflected in differences in bone formation and implant fixation at these sites. Cite this article: Bone Joint Res 2021;10(9):611-618

    Controlled spatial and conformational display of immobilised bone morphogenetic protein-2 and osteopontin signalling motifs regulates osteoblast adhesion and differentiation in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The interfacial molecular mechanisms that regulate mammalian cell growth and differentiation have important implications for biotechnology (production of cells and cell products) and medicine (tissue engineering, prosthetic implants, cancer and developmental biology). We demonstrate here that engineered protein motifs can be robustly displayed to mammalian cells <it>in vitro </it>in a highly controlled manner using a soluble protein scaffold designed to self assemble on a gold surface.</p> <p>Results</p> <p>A protein was engineered to contain a C-terminal cysteine that would allow chemisorption to gold, followed by 12 amino acids that form a water soluble coil that could switch to a hydrophobic helix in the presence of alkane thiols. Bioactive motifs from either bone morphogenetic protein-2 or osteopontin were added to this scaffold protein and when assembled on a gold surface assessed for their ability to influence cell function. Data demonstrate that osteoblast adhesion and short-term responsiveness to bone morphogenetic protein-2 is dependent on the surface density of a cell adhesive motif derived from osteopontin. Furthermore an immobilised cell interaction motif from bone morphogenetic protein supported bone formation <it>in vitro </it>over 28 days (in the complete absence of other osteogenic supplements). In addition, two-dimensional patterning of this ligand using a soft lithography approach resulted in the spatial control of osteogenesis.</p> <p>Conclusion</p> <p>These data describe an approach that allows the influence of immobilised protein ligands on cell behaviour to be dissected at the molecular level. This approach presents a durable surface that allows both short (hours or days) and long term (weeks) effects on cell activity to be assessed. This widely applicable approach can provide mechanistic insight into the contribution of immobilised ligands in the control of cell activity.</p

    Targeted protein delivery: carbodiimide crosslinking influences protein release from microparticles incorporated within collagen scaffolds.

    Get PDF
    Tissue engineering response may be tailored via controlled, sustained release of active agents from protein-loaded degradable microparticles incorporated directly within three-dimensional (3D) ice-templated collagen scaffolds. However, the effects of covalent crosslinking during scaffold preparation on the availability and release of protein from the incorporated microparticles have not been explored. Here, we load 3D ice-templated collagen scaffolds with controlled additions of poly-(DL-lactide-co-glycolide) microparticles. We probe the effects of subsequent N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride crosslinking on protein release, using microparticles with different internal protein distributions. Fluorescein isothiocyanate labelled bovine serum albumin is used as a model protein drug. The scaffolds display a homogeneous microparticle distribution, and a reduction in pore size and percolation diameter with increased microparticle addition, although these values did not fall below those reported as necessary for cell invasion. The protein distribution within the microparticles, near the surface or more deeply located within the microparticles, was important in determining the release profile and effect of crosslinking, as the surface was affected by the carbodiimide crosslinking reaction applied to the scaffold. Crosslinking of microparticles with a high proportion of protein at the surface caused both a reduction and delay in protein release. Protein located within the bulk of the microparticles, was protected from the crosslinking reaction and no delay in the overall release profile was seen.This work was supported by the European Research Council [ERC Advanced Grant 320598 3D-E] and was also funded by a grant from the Medical Research Council, Arthritis Research UK, Reumafonds and the UKRM
    • …
    corecore