18 research outputs found

    Investigation of dual Src/c-Abl tyrosine kinase inhibition as a novel therapeutic approach for chronic lymphocytic leukaemia

    Get PDF
    Chronic lymphocytic leukaemia (CLL) is the most common leukaemia in the western world, and remains incurable with current chemotherapy. Although CLL was long-regarded as an autonomous accumulation of functionally incompetent lymphocytes that escape apoptosis, significant rates of clonal proliferation and death have now been elegantly demonstrated in CLL patients in vivo. This, coupled with the high rates of spontaneous apoptosis observed on ex-vivo culture, confirms that CLL is a dynamic disorder, in which the tumour microenvironment is central to leukemic cell survival. Recent advances in CLL cell biology implicate signalling through the B cell antigen receptor (BCR) in the pathogenesis and progression of the disease. The absence of significant somatic hypermutation of the immunoglobulin heavy chain variable region (IgVH), which largely correlates with the expression of ZAP-70, in CLL cells is a significant adverse prognostic marker. CLL cases expressing an unmutated IgVH gene generally retain the ability to signal through the BCR. Components of the BCR signalling pathway are therefore attractive novel therapeutic targets, with potential selectivity for adverse prognostic groups. The non-receptor tyrosine kinases Lyn (a Src kinase) and c-Abl are both required for effective BCR signalling. Both are over-expressed, and constitutively active in CLL, and inhibition of either induces a degree of apoptosis. Dasatinib is a Src/c-Abl tyrosine kinase inhibitor in clinical use in chronic myeloid leukaemia. The main objective of this project was to conduct translational studies to determine the anti-leukaemic effects of dasatinib on CLL cells in vitro. While the Src kinase inhibitor PP2, and the c-Abl inhibitor imatinib induced apoptosis of CLL cells at micromolar concentrations, dasatinib induced apoptosis of CLL cells at clinically achievable nanomolar concentrations, with an EC50 in the region of 10-30 nM, and plateau in effect above 100 nM. CLL cell treatment with 100 nM dasatinib for 48 hr led to a mean reduction in viability of 33.7%, but with significant inter-sample variability. No correlation was observed between dasatinib sensitivity and the established prognostic factors clinical stage, ZAP-70 status, or cytogenetic subgroup. Notably, CLL cells known to contain the 17p deletion, resulting in p53 dysfunction, responded similarly to other samples. Apoptosis induced by dasatinib involved loss of mitochondrial membrane potential and was caspase-dependent. Although dasatinib treatment alone rarely induced apoptosis of over 50% of CLL cells, synergy was observed between dasatinib and the current first-line chemotherapeutic agents fludarabine and chlorambucil. Moreover, dasatinib exhibited synergy with a novel Bcl-2 inhibitor, and the HSP90 inhibitor 17-DMAG. Recently, antigen-independent ‘tonic’ BCR signalling has been linked to the pathogenesis of B cell lymphomas. Tonic signalling is proposed to be mediated by basal activity of Lyn and Syk kinases recruited to the BCR. As Syk is also over-expressed in CLL, we hypothesised that dasatinib sensitivity may correlate with inhibition of components of tonic BCR signal transduction. Indeed, CLL cells contained constitutively phosphorylated SykY348. Furthermore, a significant inverse correlation was observed between basal SykY348 phosphorylation and dasatinib sensitivity in individual samples, suggesting its’ utility as a biomarker of response. Dasatinib consistently inhibited an increase in SykY348 phosphorylation on BCR crosslinking. In addition, dasatinib inhibited calcium flux, and prevented Akt and MAPK phosphorylation on BCR stimulation. Moreover, dasatinib prevented up-regulation of Mcl-1 and blocked the increase in CLL cell survival observed on prolonged BCR stimulation, confirming inhibition of BCR signalling as a functionally relevant treatment strategy in CLL. Although dasatinib prevented CXCR4 down-regulation following BCR stimulation of CLL cells, dasatinib also specifically inhibited PI-3K/Akt activation upon CXCR4 stimulation by SDF-1, resulting in reduced actin polymerization and migration following SDF-1 stimulation. While the full translational implications of these observations remain to be determined, these data demonstrate that the anti-leukaemic effects of dasatinib extend beyond direct inhibition of BCR signal transduction. It is well recognised that bone marrow (BM) stromal cells and blood-derived ‘nurse-like’ cells protect CLL cells from spontaneous apoptosis in vitro. More recently, proliferating CLL cells have been identified within specialised ‘proliferation centres’, admixed with appreciable numbers of T lymphocytes, predominantly activated CD4+ T cells expressing CD40 ligand (CD154), and interleukin 4 (IL-4). CD40/IL-4 stimulation of CLL cells in vitro leads to up-regulation of the anti-apoptotic Bcl-2 family proteins Bcl-xL and Mcl-1, and the pro-proliferative protein survivin, mimicking the expression profile of CLL cells isolated from patient lymph nodes (LNs). We were interested to determine whether the effects of dasatinib on CLL cells were modulated by these microenvironmental factors. To achieve this, CLL cells were co-cultured with either the murine BM stromal cell line NT-L, or NT-L cells stably transfected to express CD154, the latter with IL-4 added to the culture medium (154L/IL-4 system). The pro-apoptotic effect of dasatinib in CLL cells was abrogated by stromal cell co-culture, with or without CD154 and IL-4. Stromal cell-mediated resistance to dasatinib involved Akt and MAPK signalling, as evidenced by the ability of both the PI-3K inhibitor LY294002, and the MEK inhibitor PD98059 to restore dasatinib sensitivity of cells in NT-L co-culture. 154L/IL-4 co-culture activated multiple MAPK, associated with up-regulation of Bcl-xL, Mcl-1, and survivin, which was not inhibited by dasatinib. Dasatinib also failed to inhibit CLL cell proliferation in the 154L/IL-4 system. While dasatinib retained the ability to sensitise CLL cells to both fludarabine and chlorambucil in NT-L co-culture, the addition of CD154 and IL-4 rendered cells resistant to all drug combinations. Dasatinib did however retain the ability to sensitise CLL cells to the HSP90 inhibitor 17-DMAG in both NT-L and 154L/IL-4 co-culture. In conclusion, these studies demonstrate that dasatinib offers much as a novel therapeutic strategy for CLL, overcoming pro-survival signalling through the BCR. However, our data suggest that dasatinib may be best utilised in combination treatment strategies with agents that can target antigen-independent signalling networks within the microenvironment. Collectively, this work provides valuable information that will inform future clinical trials of Src/c-Abl inhibitors in CLL

    Targeting proliferating CLL cells with a novel synthetic low density lipoprotein drug delivery system

    Get PDF
    Chronic lymphocytic leukaemia (CLL) currently remains incurable without stem cell transplantation, an option for only the minority of patients. Despite advances in chemotherapy, most patients relapse owing to the persistence of minimal residual disease (MRD). Substantial evidence has accrued to suggest that the tumour microenvironment is central to disease progression in CLL, with the bone marrow (BM) and lymph nodes (LN) acting as sanctuary sites for MRD. Whilst peripheral blood CLL cells are cell cycle arrested, significant rates of clonal proliferation occur in the BM/LN wherein acquisition of deleterious cytogenetic abnormalities such as 17p deletion may arise. Further, CLL cells co-cultured in vitro on stroma with CD154/IL-4 to give a proliferative signal, are chemoresistant to first line therapies. As proliferating cells require lipids for membrane synthesis, we hypothesise that proliferating CLL cells will have greater requirement for low density lipoprotein (LDL) compared to circulating CLL cells, and also that of normal resting lymphocytes providing a potentially differential cellular property to attack. Proof of concept of drug-loaded synthetic (s)LDL nanoparticles has been provided in glioblastoma and CML. We propose that drug loading into sLDL nanoparticles will allow selective targeting of proliferating CLL cells within the BM/LN proliferation centre, will protect drugs from plasma binding proteins, and will ultimately raise intracellular drug concentrations in the protective microenvironmental niche, to overcome chemoresistance. Aims. To determine (a) the extent of sLDL uptake by CLL cells compared to normal; and (b) whether sLDL uptake by CLL cells changes under proliferative conditions mimicking the proliferation centre. This will determine whether proliferating CLL cells have increased sLDL uptake compared to non-cycling CLL cells or normal B lymphocytes. Methods. sLDL uptake was assessed by flow cytometry, measuring the mean fluorescence intensity in the FITC channel owing to the stable incorporation of dioctadecyloxacarbocyanine (DiO) into the formulation. Internalisation was confirmed by deconvolution fluorescence microscopy. Primary CLL and normal donor samples were enriched for CD19+ B-lineage cells by magnetically activated cell sorting. Cells were cultured in media on tissue culture plastic or NT-L mouse fibroblasts with or without CD154/IL4. Lymphoid cells were stained with CellTrace VioletR to track cell division in response to proliferative signals (CD154/IL4 stroma). Results. HG3, a human lymphoblastoid cell line, avidly took up sLDL nanoparticles in a concentration (0-50 ng/mL cholesterol) and time (0.5-24h) dependent manner. Normal donor peripheral blood B-cells and CLL cells cultured on plastic did not actively take up sLDL but maintained their viability even in the highest concen- tration sLDL tested. Actively proliferating CLL cells on CD154/IL4 stroma could be targeted with sLDL unlike their non-cycling counterparts; interestingly even the minor population of cells that had remained undivided on stroma were also found to be sLDL positive. Summary. CLL cells can be selectively targeted by sLDL nanoparticles with respect to their non-cycling counterparts. We next will investigate the in vivo targeting of sLDL which we hypothesise, by virtue of their size, will home to lymphoreticular organs, sanctuary sites for CLL MRD

    Generation of a poor prognostic chronic lymphocytic leukemia-like disease model: PKC subversion induces up-regulation of PKC II expression in B lymphocytes

    Get PDF
    Overwhelming evidence identifies the microenvironment as a critical factor in the development and progression of chronic lymphocytic leukemia, underlining the importance of developing suitable translational models to study the pathogenesis of the disease. We previously established that stable expression of kinase dead protein kinase C alpha in hematopoietic progenitor cells resulted in the development of a chronic lymphocytic leukemia-like disease in mice. Here we demonstrate that this chronic lymphocytic leukemia model resembles the more aggressive subset of chronic lymphocytic leukemia, expressing predominantly unmutated immunoglobulin heavy chain genes, with upregulated tyrosine kinase ZAP-70 expression and elevated ERK-MAPK-mTor signaling, resulting in enhanced proliferation and increased tumor load in lymphoid organs. Reduced function of PKCα leads to an up-regulation of PKCβII expression, which is also associated with a poor prognostic subset of human chronic lymphocytic leukemia samples. Treatment of chronic lymphocytic leukemia-like cells with the selective PKCβ inhibitor enzastaurin caused cell cycle arrest and apoptosis both in vitro and in vivo, and a reduction in the leukemic burden in vivo. These results demonstrate the importance of PKCβII in chronic lymphocytic leukemia-like disease progression and suggest a role for PKCα subversion in creating permissive conditions for leukemogenesis

    Inhibition of NF-κB-mediated signaling by the cyclin-dependent kinase inhibitor CR8 overcomes pro-survival stimuli to induce apoptosis in chronic lymphocytic leukemia cells

    Get PDF
    Purpose: Chronic lymphocytic leukemia (CLL) is currently incurable with standard chemotherapeutic agents, highlighting the need for novel therapies. Overcoming proliferative and cytoprotective signals generated within the microenvironment of lymphoid organs is essential for limiting CLL progression and ultimately developing a cure. Experimental Design: We assessed the potency of cyclin-dependent kinase (CDK) inhibitor CR8, a roscovitine analog, to induce apoptosis in primary CLL from distinct prognostic subsets using flow cytometry–based assays. CLL cells were cultured in in vitro prosurvival and proproliferative conditions to mimic microenvironmental signals in the lymphoid organs, to elucidate the mechanism of action of CR8 in quiescent and proliferating CLL cells using flow cytometry, Western blotting, and quantitative real-time PCR. Results: CR8 was 100-fold more potent at inducing apoptosis in primary CLL cells than roscovitine, both in isolated culture and stromal-coculture conditions. Importantly, CR8 induced apoptosis in CD40-ligated CLL cells and preferentially targeted actively proliferating cells within these cultures. CR8 treatment induced downregulation of the antiapoptotic proteins Mcl-1 and XIAP, through inhibition of RNA polymerase II, and inhibition of NF-κB signaling at the transcriptional level and through inhibition of the inhibitor of IκB kinase (IKK) complex, resulting in stabilization of IκBα expression. Conclusions: CR8 is a potent CDK inhibitor that subverts pivotal prosurvival and proproliferative signals present in the tumor microenvironment of CLL patient lymphoid organs. Our data support the clinical development of selective CDK inhibitors as novel therapies for CLL

    Dasatinib inhibits CXCR4 signaling in chronic lymphocytic leukaemia cells and impairs migration towards CXCL12

    Get PDF
    Chemokines and their ligands play a critical role in enabling chronic lymphocytic leukaemia (CLL) cells access to protective microenvironmental niches within tissues, ultimately resulting in chemoresistance and relapse: disruption of these signaling pathways has become a novel therapeutic approach in CLL. The tyrosine kinase inhibitor dasatinib inhibits migration of several cell lines from solid-organ tumours, but effects on CLL cells have not been reported. We studied the effect of clinically achievable concentrations of dasatinib on signaling induced by the chemokine CXCL12 through its' receptor CXCR4, which is highly expressed on CLL cells. Dasatinib pre-treatment inhibited Akt and ERK phosphorylation in CLL cells upon stimulation with CXCL12. Dasatinib also significantly diminished the rapid increase in actin polymerisation observed in CLL cells following CXCL12 stimulation. Moreover, the drug significantly inhibited chemotaxis in a transwell assay, and reduced the percentage of cells able to migrate beneath a CXCL12-expressing murine stromal cell line. Dasatinib also abrogated the anti-apoptotic effect of prolonged CXCL12 stimulation on cultured CLL cells. These data suggest that dasatinib, akin to other small molecule kinase inhibitors targeting the B-cell receptor signaling pathway, may redistribute CLL cells from protective tissue niches to the peripheral blood, and support the investigation of dasatinib in combination strategies

    AKT/mTORC2 inhibition activates FOXO1 function in CLL cells reducing B cell receptor-mediated survival

    Get PDF
    Purpose: To determine whether inhibition of mechanistic target of rapamycin (mTOR) kinase-mediated signaling represents a valid therapeutic approach for chronic lymphocytic leukemia (CLL). Experimental Design: Stratification of mTOR activity was carried out in primary CLL patient samples and an aggressive CLL-like mouse model. The potency of dual mTOR inhibitor AZD8055 to induce apoptosis in primary CLL cells was assessed in the presence/absence of B cell receptor (BCR) ligation. Furthermore, we addressed the molecular and functional impact of dual mTOR inhibition in combination with BTK inhibitor ibrutinib. Results: Differential regulation of basal mTORC1 activity was observed in poor prognostic CLL samples, with elevated p4EBP1T37/46 and decreased p70S6 kinase activity, suggesting that dual mTORC1/2 inhibitors may exhibit improved response in poor prognostic CLL compared with rapalogs. AZD8055 treatment of primary CLL cells significantly reduced CLL survival in vitro compared with rapamycin, preferentially targeting poor prognostic subsets and overcoming BCR-mediated survival advantages. Furthermore, AZD8055, and clinical analog AZD2014, significantly reduced CLL tumor load in mice. AKT substrate FOXO1, while overexpressed in CLL cells of poor prognostic patients in LN biopsies, peripheral CLL cells, and mouse-derived CLL-like cells, appeared to be inactive. AZD8055 treatment partially reversed FOXO1 inactivation downstream of BCR crosslinking, significantly inhibiting FOXO1T24 phosphorylation in an mTORC2-AKT-dependent manner, to promote FOXO1 nuclear localization, activity and FOXO1-mediated gene regulation. FOXO1 activity was further significantly enhanced on combining AZD8055 with ibrutinib. Conclusions: Our studies demonstrate that dual mTOR inhibitors show promise as future CLL therapies, particularly in combination with ibrutinib

    Ibrutinib Plus Venetoclax in Relapsed/Refractory Chronic Lymphocytic Leukemia: The CLARITY Study.

    Get PDF
    PURPOSE:The treatment of chronic lymphocytic leukemia (CLL) has been revolutionized by targeted therapies that either inhibit proliferation (ibrutinib) or reactivate apoptosis (venetoclax). Both significantly improve survival in CLL and replace chemoimmunotherapy for many patients. However, individually, they rarely lead to eradication of measurable residual disease (MRD) and usually are taken indefinitely or until progression. We present the CLARITY trial that combined ibrutinib with venetoclax to eradicate detectable CLL with the intention of stopping therapy. PATIENTS AND METHODS:CLARITY is a phase II trial that combined ibrutinib with venetoclax in patients with relapsed or refractory CLL. The primary end point was eradication of MRD after 12 months of combined therapy. Key secondary end points were response by International Workshop on CLL criteria, safety, and progression-free and overall survival. RESULTS:In 53 patients after 12 months of ibrutinib plus venetoclax, MRD negativity (fewer than one CLL cell in 10,000 leukocytes) was achieved in the blood of 28 (53%) and the marrow of 19 (36%). Forty-seven patients (89%) responded, and 27 (51%) achieved a complete remission. After a median follow-up of 21.1 months, one patient progressed, and all patients were alive. A single case of biochemical tumor lysis syndrome was observed. Other adverse effects were mild and/or manageable and most commonly were neutropenia or GI events. CONCLUSION:The combination of ibrutinib plus venetoclax was well tolerated in patients with relapsed or refractory CLL. There was a high rate of MRD eradication that led to the cessation of therapy in some patients. The progression-free and overall survival rates are encouraging for relapsed and refractory CLL

    Fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin with gemtuzumab ozogamicin improves event-free survival in younger patients with newly diagnosed aml and overall survival in patients with npm1 and flt3 mutations

    Get PDF
    Purpose To determine the optimal induction chemotherapy regimen for younger adults with newly diagnosed AML without known adverse risk cytogenetics. Patients and Methods One thousand thirty-three patients were randomly assigned to intensified (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin [FLAG-Ida]) or standard (daunorubicin and Ara-C [DA]) induction chemotherapy, with one or two doses of gemtuzumab ozogamicin (GO). The primary end point was overall survival (OS). Results There was no difference in remission rate after two courses between FLAG-Ida + GO and DA + GO (complete remission [CR] + CR with incomplete hematologic recovery 93% v 91%) or in day 60 mortality (4.3% v 4.6%). There was no difference in OS (66% v 63%; P = .41); however, the risk of relapse was lower with FLAG-Ida + GO (24% v 41%; P < .001) and 3-year event-free survival was higher (57% v 45%; P < .001). In patients with an NPM1 mutation (30%), 3-year OS was significantly higher with FLAG-Ida + GO (82% v 64%; P = .005). NPM1 measurable residual disease (MRD) clearance was also greater, with 88% versus 77% becoming MRD-negative in peripheral blood after cycle 2 (P = .02). Three-year OS was also higher in patients with a FLT3 mutation (64% v 54%; P = .047). Fewer transplants were performed in patients receiving FLAG-Ida + GO (238 v 278; P = .02). There was no difference in outcome according to the number of GO doses, although NPM1 MRD clearance was higher with two doses in the DA arm. Patients with core binding factor AML treated with DA and one dose of GO had a 3-year OS of 96% with no survival benefit from FLAG-Ida + GO. Conclusion Overall, FLAG-Ida + GO significantly reduced relapse without improving OS. However, exploratory analyses show that patients with NPM1 and FLT3 mutations had substantial improvements in OS. By contrast, in patients with core binding factor AML, outcomes were excellent with DA + GO with no FLAG-Ida benefit

    Death-associated protein kinase (DAPK) and signal transduction: regulation in cancer

    No full text
    Death-associated protein kinase (DAPK) is a pro-apoptotic serine/threonine protein kinase that is dysregulated in a wide variety of cancers. The mechanism by which this occurs has largely been attributed to promoter hypermethylation, which results in gene silencing. However, recent studies indicate that DAPK expression can be detected in some cancers, but its function is still repressed, suggesting that DAPK activity can be subverted at a post-translational level in cancer cells. This review will focus on recent data describing potential mechanisms that may alter the expression, regulation or function of DAPK
    corecore