31 research outputs found

    Stepped-wedge randomised trial of laparoscopic ventral mesh rectopexy in adults with chronic constipation: Study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: Laparoscopic ventral mesh rectopexy (LVMR) is an established treatment for external full-thickness rectal prolapse. However, its clinical efficacy in patients with internal prolapse is uncertain due to the lack of high-quality evidence. METHODS: An individual level, stepped-wedge randomised trial has been designed to allow observer-blinded data comparisons between patients awaiting LVMR with those who have undergone surgery. Adults with symptomatic internal rectal prolapse, unresponsive to prior conservative management, will be eligible to participate. They will be randomised to three arms with different delays before surgery (0, 12 and 24 weeks). Efficacy outcome data will be collected at equally stepped time points (12, 24, 36 and 48 weeks). The primary objective is to determine clinical efficacy of LVMR compared to controls with reduction in the Patient Assessment of Constipation Quality of Life (PAC-QOL) at 24 weeks serving as the primary outcome. Secondary objectives are to determine: (1) the clinical effectiveness of LVMR to 48 weeks to a maximum of 72 weeks; (2) pre-operative determinants of outcome; (3) relevant health economics for LVMR; (4) qualitative evaluation of patient and health professional experience of LVMR and (5) 30-day morbidity and mortality rates. DISCUSSION: An individual-level, stepped-wedge, randomised trial serves the purpose of providing an untreated comparison for the active treatment group, while at the same time allowing the waiting-listed participants an opportunity to obtain the intervention at a later date. In keeping with the basic ethical tenets of this design, the average waiting time for LVMR (12 weeks) will be shorter than that for routine services (24 weeks)

    Differential colonization with segmented filamentous bacteria and Lactobacillus murinus do not drive divergent development of diet-induced obesity in C57BL/6 mice

    Get PDF
    Alterations in the gut microbiota have been proposed to modify the development and maintenance of obesity and its sequelae. Definition of underlying mechanisms has lagged, although the ability of commensal gut microbes to drive pathways involved in inflammation and metabolism has generated compelling, testable hypotheses. We studied C57BL/6 mice from two vendors that differ in their obesogenic response and in their colonization by specific members of the gut microbiota having well-described roles in regulating gut immune responses. We confirmed the presence of robust differences in weight gain in mice from these different vendors during high fat diet stress. However, neither specific, highly divergent members of the gut microbiota (Lactobacillus murinus, segmented filamentous bacteria) nor the horizontally transmissible gut microbiota were found to be responsible. Constitutive differences in locomotor activity were observed, however. These data underscore the importance of selecting appropriate controls in this widely used model of human obesity

    Clinical features of idiopathic inflammatory polymyopathy in the Hungarian Vizsla

    Get PDF
    Background A retrospective study of the clinicopathological features of presumed and confirmed cases of idiopathic inflammatory polymyopathy in the Hungarian Vizsla dog and guidelines for breeding. Results 369 medical records were reviewed (1992–2013) and 77 Hungarian Vizslas were identified with a case history consistent with idiopathic inflammatory polymyopathy. Inclusion criteria were: group 1 (confirmed diagnosis); histopathology and clinical findings compatible with an inflammatory polymyopathy and group 2 (probable diagnosis); clinical findings compatible with a polymyopathy including dysphagia, sialorrhea, temporal muscle atrophy, elevated serum creatine kinase (CK) activity, and sufficient clinical history to suggest that other neuromuscular disorders could be ruled out. Some group 2 dogs had muscle biopsy, which suggested muscle disease but did not reveal an inflammatory process. The mean age of onset was 2.4 years; male dogs were slightly overrepresented. Common presenting signs were dysphagia, sialorrhea, masticatory muscle atrophy, and regurgitation. Common muscle histopathological findings included degenerative and regenerative changes, with multifocal mononuclear cell infiltration with lymphoplasmacytic myositis of variable severity. A positive response to immunosuppressive treatment supported an immune-mediated aetiology. The mean age at death and survival time were 6.4 and 3.9 years, respectively. Recurrence of clinical signs and aspiration pneumonia were common reasons for euthanasia. Conclusions Diagnosis of Vizsla idiopathic inflammatory polymyopathy can be challenging due to lack of specific tests, however the presence of dysphagia, regurgitation and masticatory muscle atrophy in this breed with negative serological tests for masticatory muscle myositis and myasthenia gravis, along with muscle biopsies suggesting an inflammatory process, support the diagnosis. However, there is an urgent need for a more specific diagnostic test. The average of inbreeding coefficient (CoI) of 16.3% suggests an increased expression of a Dog Leukocyte Antigen Class II haplotype, leading to an increased disease risk. The prognosis remains guarded, as treatment can only manage the disease. Recurrence of clinical signs and perceived poor quality of life are the most common reasons for humane euthanasia.</p

    Aerothermodynamic analysis of the SNAP-27 fuel cask

    No full text
    An aerothermodynamic analysis of the SNAP-27 LEM fuel cask is presented for each of three mission aborts. Aerodynamic models for point mass and six degree-of-freedom trajectories are used, and the fuel cask heating rates and temperature responses are predicted for these trajectories. A survey of analytical and experimental studies of separated flow is related to the fuel cask, and a shock tunnel test program is outlined for further fuel cask analyses

    l-Citrulline Metabolism in Mice Augments CD4+ T Cell Proliferation and Cytokine Production In Vitro, and Accumulation in the Mycobacteria-Infected Lung

    No full text
    Activation, recruitment, and effector function of T lymphocytes are essential for control of mycobacterial infection. These processes are tightly regulated in T cells by the availability of l-arginine within the microenvironment. In turn, mycobacterial infection dampens T cell responsiveness through arginase induction in myeloid cells, promoting sequestration of l-arginine within the local milieu. Here, we show T cells can replenish intracellular l-arginine through metabolism of l-citrulline to mediate inflammatory function, allowing anti-mycobacterial T cells to overcome arginase-mediated suppression. Furthermore, T cell l-citrulline metabolism is necessary for accumulation of CD4+ T cells at the site of infection, suggesting this metabolic pathway is involved during anti-mycobacterial T cell immunity in vivo. Together, these findings establish a contribution for l-arginine synthesis by T cells during mycobacterial infection, and implicate l-citrulline as a potential immuno-nutrient to modulate host immunity
    corecore