385 research outputs found

    Teaching academic writing skills at Level 9: An evaluation

    Get PDF
    This study is an evaluation of a level 9 academic writing skills module in the School of Business Studies, Letterkenny IT. A 5 credit writing module was offered to all masters students in support of their dissertations. The evaluation will assess the overall quality of the module and the individual teaching and learning strategies, from the learner perspective. This could be developed into an iterative process of improving course design and add something to the knowledge base on the pedagogy of academic writing skills. The approach is consistent with the ethos of the reflective practitioner.\ud Three techniques were identified from the literature as effective, and included in the module design: the writer-respondent method, writers’ groups incorporating peer review, and WebCT© reflective postings. Learners could bring their research proposal (assessed on a separate methodology module) to the Academic Writing course for both tutor and peer review. The module had relatively low contact hours, and assessment comprised eight WebCT© discussion postings (task based and reflective) and a portfolio of evidence of improvement in academic writing skills. The module used group work including writing partnerships, an emphasis on practising writing skills and provided experience of giving and receiving feedback. \ud Since the starting point of the module design was a perceived problem with academic writing skills at level 9, the learning outcomes of the academic writing module will be significant to evaluation. Therefore the evaluation will comprise a questionnaire to the twelve participating students based on perceived achievement of intended learning outcomes. All students will then be interviewed with a particular emphasis on the effectiveness of the three main strategies of the module

    Nut production in Bertholletia excelsa across a logged forest mosaic: implications for multiple forest use

    Get PDF
    Although many examples of multiple-use forest management may be found in tropical smallholder systems, few studies provide empirical support for the integration of selective timber harvesting with non-timber forest product (NTFP) extraction. Brazil nut (Bertholletia excelsa, Lecythidaceae) is one of the world’s most economically-important NTFP species extracted almost entirely from natural forests across the Amazon Basin. An obligate out-crosser, Brazil nut flowers are pollinated by large-bodied bees, a process resulting in a hard round fruit that takes up to 14 months to mature. As many smallholders turn to the financial security provided by timber, Brazil nut fruits are increasingly being harvested in logged forests. We tested the influence of tree and stand-level covariates (distance to nearest cut stump and local logging intensity) on total nut production at the individual tree level in five recently logged Brazil nut concessions covering about 4000 ha of forest in Madre de Dios, Peru. Our field team accompanied Brazil nut harvesters during the traditional harvest period (January-April 2012 and January-April 2013) in order to collect data on fruit production. Three hundred and ninety-nine (approximately 80%) of the 499 trees included in this study were at least 100 m from the nearest cut stump, suggesting that concessionaires avoid logging near adult Brazil nut trees. Yet even for those trees on the edge of logging gaps, distance to nearest cut stump and local logging intensity did not have a statistically significant influence on Brazil nut production at the applied logging intensities (typically 1–2 timber trees removed per ha). In one concession where at least 4 trees ha-1 were removed, however, the logging intensity covariate resulted in a marginally significant (0.09) P value, highlighting a potential risk for a drop in nut production at higher intensities. While we do not suggest that logging activities should be completely avoided in Brazil nut rich forests, when a buffer zone cannot be observed, low logging intensities should be implemented. The sustainability of this integrated management system will ultimately depend on a complex series of socioeconomic and ecological interactions. Yet we submit that our study provides an important initial step in understanding the compatibility of timber harvesting with a high value NTFP, potentially allowing for diversification of forest use strategies in Amazonian Perù

    Non-host resistance to penetration and hyphal growth of Magnaporthe oryzae in Arabidopsis

    Get PDF
    Rice blast caused by Magnaporthe oryzae is a devastating disease of rice. Mechanisms of rice resistance to blast have been studied extensively, and the rice–M. oryzae pathosystem has become a model for plant–microbe interaction studies. However, the mechanisms of non-host resistance (NHR) to rice blast in other plants remain poorly understood. We found that penetration resistance to M. oryzae in multiple mutants, including pen2 NahG pmr5 agb1 and pen2 NahG pmr5 mlo2 plants, was severely compromised and that fungal growth was permitted in penetrated epidermal cells. Furthermore, rice Pi21 enhanced movement of infection hyphae from penetrated Arabidopsis epidermal cells to adjacent mesophyll cells. These results indicate that PEN2, PMR5, AGB1, and MLO2 function in both penetration and post-penetration resistance to M. oryzae in Arabidopsis, and suggest that the absence of rice Pi21 contributed to Arabidopsis NHR to M. oryzae

    An In Silico Modeling Approach to Understanding the Dynamics of Sarcoidosis

    Get PDF
    BACKGROUND: Sarcoidosis is a polygenic disease with diverse phenotypic presentations characterized by an abnormal antigen-mediated Th1 type immune response. At present, progress towards understanding sarcoidosis disease mechanisms and the development of novel treatments is limited by constraints attendant to conducting human research in a rare disease in the absence of relevant animal models. We sought to develop a computational model to enhance our understanding of the pathological mechanisms of and predict potential treatments of sarcoidosis. METHODOLOGY/RESULTS: Based upon the literature, we developed a computational model of known interactions between essential immune cells (antigen-presenting macrophages, effector and regulatory T cells) and cytokine mediators (IL-2, TNFα, IFNγ) of granulomatous inflammation during sarcoidosis. The dynamics of these interactions are described by a set of ordinary differential equations. The model predicts bistable switching behavior which is consistent with normal (self-limited) and "sarcoidosis-like" (sustained) activation of the inflammatory components of the system following a single antigen challenge. By perturbing the influence of model components using inhibitors of the cytokine mediators, distinct clinically relevant disease phenotypes were represented. Finally, the model was shown to be useful for pre-clinical testing of therapies based upon molecular targets and dose-effect relationships. CONCLUSIONS/SIGNIFICANCE: Our work illustrates a dynamic computer simulation of granulomatous inflammation scenarios that is useful for the investigation of disease mechanisms and for pre-clinical therapeutic testing. In lieu of relevant in vitro or animal surrogates, our model may provide for the screening of potential therapies for specific sarcoidosis disease phenotypes in advance of expensive clinical trials

    Engineering T cells for cancer therapy

    Get PDF
    It is generally accepted that the immune system plays an important role in controlling tumour development. However, the interplay between tumour and immune system is complex, as demonstrated by the fact that tumours can successfully establish and develop despite the presence of T cells in tumour. An improved understanding of how tumours evade T-cell surveillance, coupled with technical developments allowing the culture and manipulation of T cells, has driven the exploration of therapeutic strategies based on the adoptive transfer of tumour-specific T cells. The isolation, expansion and re-infusion of large numbers of tumour-specific T cells generated from tumour biopsies has been shown to be feasible. Indeed, impressive clinical responses have been documented in melanoma patients treated with these T cells. These studies and others demonstrate the potential of T cells for the adoptive therapy of cancer. However, the significant technical issues relating to the production of natural tumour-specific T cells suggest that the application of this approach is likely to be limited at the moment. With the advent of retroviral gene transfer technology, it has become possible to efficiently endow T cells with antigen-specific receptors. Using this strategy, it is potentially possible to generate large numbers of tumour reactive T cells rapidly. This review summarises the current gene therapy approaches in relation to the development of adoptive T-cell-based cancer treatments, as these methods now head towards testing in the clinical trial setting

    One step closer to understanding the role of bacteria in diabetic foot ulcers: characterising the microbiome of ulcers

    Get PDF
    Background: The aim of this study was to characterise the microbiome of new and recurrent diabetic foot ulcers using 16S amplicon sequencing (16S AS), allowing the identification of a wider range of bacterial species that may be important in the development of chronicity in these debilitating wounds. Twenty patients not receiving antibiotics for the past three months were selected, with swabs taken from each individual for culture and 16S AS. DNA was isolated using a combination of bead beating and kit extraction. Samples were sequenced on the Illumina Hiseq 2500 platform. Results: Conventional laboratory culture showed positive growth from only 55 % of the patients, whereas 16S AS was positive for 75 % of the patients (41 unique genera, representing 82 different operational taxonomic units (OTU’s). S. aureus was isolated in 72 % of culture-positive samples, whereas the most commonly detected bacteria in all ulcers were Peptoniphilusspp., Anaerococcus spp. and Corynebacterium spp., with the addition of Staphylococcus spp. in new ulcers. The majority of OTU’s residing in both new and recurrent ulcers (over 67 %) were identified as facultative or strict anaerobic Gram-positive organisms. Principal component analysis (PCA) showed no difference in clustering between the two groups (new and recurrent ulcers). Conclusions: The abundance of anaerobic bacteria has important implications for treatment as it suggests that the microbiome of each ulcer “starts afresh” and that, although diverse, are not distinctly different from one another with respect to new or recurrent ulcers. Therefore, when considering antibiotic therapy the duration of current ulceration may be a more important consideration than a history of healed ulcer

    Heritable symbionts in a world of varying temperature

    Get PDF
    Heritable microbes represent an important component of the biology, ecology and evolution of many plants, animals and fungi, acting as both parasites and partners. In this review, we examine how heritable symbiont–host interactions may alter host thermal tolerance, and how the dynamics of these interactions may more generally be altered by thermal environment. Obligate symbionts, those required by their host, are considered to represent a thermally sensitive weak point for their host, associated with accumulation of deleterious mutations. As such, these symbionts may represent an important determinant of host thermal envelope and spatial distribution. We then examine the varied relationship between thermal environment and the frequency of facultative symbionts that provide ecologically contingent benefits or act as parasites. We note that some facultative symbionts directly alter host thermotolerance. We outline how thermal environment will alter the benefits/costs of infection more widely, and additionally modulate vertical transmission efficiency. Multiple patterns are observed, with symbionts being cold sensitive in some species and heat sensitive in others, with varying and non-coincident thresholds at which phenotype and transmission are ablated. Nevertheless, it is clear that studies aiming to predict ecological and evolutionary dynamics of symbiont–host interactions need to examine the interaction across a range of thermal environments. Finally, we discuss the importance of thermal sensitivity in predicting the success/failure of symbionts to spread into novel species following natural/engineered introduction

    Fungal Endophyte Diversity in Sarracenia

    Get PDF
    Fungal endophytes were isolated from 4 species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, 8 within the Ascomycota and 4 within the Basidiomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. Endophytes are known to produce a large number of metabolites, some of which may contribute to the protection and survival of the host. We speculate that endophyte-infected Sarracenia may benefit from their fungal associates by their influence on nutrient availability from within pitchers and, possibly, by directly influencing the biota within pitchers

    ERK1 Regulates the Hematopoietic Stem Cell Niches

    Get PDF
    The mitogen-activated protein kinases (MAPK) ERK1 and ERK2 are among the major signal transduction molecules but little is known about their specific functions in vivo. ERK activity is provided by two isoforms, ERK1 and ERK2, which are ubiquitously expressed and share activators and substrates. However, there are not in vivo studies which have reported a role for ERK1 or ERK2 in HSCs and the bone marrow microenvironment. The present study shows that the ERK1-deficient mice present a mild osteopetrosis phenotype. The lodging and the homing abilities of the ERK1−/− HSC are impaired, suggesting that the ERK1−/−-defective environment may affect the engrafment of HSCs. Serial transplantations demonstrate that ERK1 is involved in the maintenance of an appropriate medullar microenvironment, but that the intrinsic properties of HSCs are not altered by the ERK1−/− defective microenvironment. Deletion of ERK1 impaired in vitro and in vivo osteoclastogenesis while osteoblasts were unaffected. As osteoclasts derive from precursors of the monocyte/macrophage lineage, investigation of the monocytic compartment was performed. In vivo analysis of the myeloid lineage progenitors revealed that the frequency of CMPs increased by approximately 1.3-fold, while the frequency of GMPs significantly decreased by almost 2-fold, compared with the respective WT compartments. The overall mononuclear-phagocyte lineage development was compromised in these mice due to a reduced expression of the M-CSF receptor on myeloid progenitors. These results show that the cellular targets of ERK1 are M-CSFR-responsive cells, upstream to osteoclasts. While ERK1 is well known to be activated by M-CSF, the present results are the first to point out an ERK1-dependent M-CSFR regulation on hematopoietic progenitors. This study reinforces the hypothesis of an active cross-talk between HSCs, their progeny and bone cells in the maintenance of the homeostasis of these compartments
    corecore