5 research outputs found

    Facilitators and barriers to seasonal malaria chemoprevention (SMC) uptake in Nigeria: a qualitative approach

    Get PDF
    BACKGROUND: SMC was adopted in Nigeria in 2014 and by 2021 was being implemented in 18 states, over four months between June and October by 143000 community drug distributors (CDDs) to a target population of 23million children. Further expansion of SMC is planned, extending to 21 states with four or five monthly cycles. In view of this massive scale-up, the National Malaria Elimination Programme undertook qualitative research in five states shortly after the 2021 campaign to understand community attitudes to SMC so that these perspectives inform future planning of SMC delivery in Nigeria. METHODS: In 20 wards representing urban and rural areas with low and high SMC coverage in five states, focus group discussions were held with caregivers, and in-depth interviews conducted with community leaders and community drug distributors. Interviews were also held with local government area and State malaria focal persons and at national level with the NMEP coordinator, and representatives of partners working on SMC in Nigeria. Interviews were recorded and transcribed, those in local languages translated into English, and transcripts analysed using NVivo software. RESULTS: In total, 84 focus groups and 106 interviews were completed. Malaria was seen as a major health concern, SMC was widely accepted as a key preventive measure, and community drug distributors (CDDs) were generally trusted. Caregivers preferred SMC delivered door-to-door to the fixed-point approach, because it allowed them to continue daily tasks, and allowed time for the CDD to answer questions. Barriers to SMC uptake included perceived side-effects of SMC drugs, a lack of understanding of the purpose of SMC, mistrust and suspicions that medicines provided free may be unsafe or ineffective, and local shortages of drugs. CONCLUSIONS: Recommendations from this study were shared with all community drug distributors and others involved in SMC campaigns during cascade training in 2022, including the need to strengthen communication about the safety and effectiveness of SMC, recruiting distributors from the local community, greater involvement of state and national level pharmacovigilance coordinators, and stricter adherence to the planned medicine allocations to avoid local shortages. The findings reinforce the importance of retaining door-to-door delivery of SMC

    Feasibility and safety of integrating mass drug administration for helminth control with seasonal malaria chemoprevention among Senegalese children: a randomized controlled, observer-blind trial

    Get PDF
    BACKGROUND: The overlap in the epidemiology of malaria and helminths has been identified as a potential area to exploit for the development of an integrated control strategy that may help to achieve elimination of malaria and helminths. A randomized, controlled, observer-blind trial was conducted to assess the feasibility and safety of combining mass drug administration (MDA) for schistosomiasis and soil transmitted helminths (STH) with seasonal malaria chemoprevention (SMC) among children living in Senegal. METHODS: Female and male children aged 1-14 years were randomized 1:1:1, to receive Vitamin A and Zinc on Day 0, followed by SMC drugs (sulfadoxine-pyrimethamine and amodiaquine) on Days 1-3 (control group); or praziquantel and Vitamin A on Day 0, followed by SMC drugs on Days 1-3 (treatment group 1); or albendazole and praziquantel on Day 0, followed by SMC drugs on Days 1-3 (treatment group 2). Safety assessment was performed by collecting adverse events from all children for six subsequent days following administration of the study drugs. Pre- and post-intervention, blood samples were collected for determination of haemoglobin concentration, malaria microscopy, and PCR assays. Stool samples were analyzed using Kato-Katz, Merthiolate-iodine-formalin and PCR methods. Urine filtration, PCR and circulating cathodic antigen tests were also performed. RESULTS: From 9 to 22 June 2022, 627 children aged 1-14 years were randomized into the three groups described above. Mild, transient vomiting was observed in 12.6% (26/206) of children in treatment group 2, in 10.6% (22/207) in group 1, and in 4.2% (9/214) in the control group (p = 0.005). Pre-intervention, the geometric mean value of Plasmodium falciparum parasite density was highest among children who received albendazole, praziquantel with SMC drugs. Post-intervention, the parasite density was highest among children who received SMC drugs only. Children who received praziquantel and SMC drugs had a lower risk of developing severe anaemia than their counterparts who received SMC drugs alone (OR = 0.81, 95% CI 0.13-5.00, p = 0.63). CONCLUSIONS: Integration of MDA for helminths with SMC drugs was safe and feasible among Senegalese children. These findings support further evaluation of the integrated control model. TRIAL REGISTRATION: The study is registered at Clinical Trial.gov NCT05354258

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Investigating the etiologies of non-malarial febrile illness in Senegal using metagenomic sequencing

    No full text
    Abstract The worldwide decline in malaria incidence is revealing the extensive burden of non-malarial febrile illness (NMFI), which remains poorly understood and difficult to diagnose. To characterize NMFI in Senegal, we collected venous blood and clinical metadata in a cross-sectional study of febrile patients and healthy controls in a low malaria burden area. Using 16S and untargeted sequencing, we detected viral, bacterial, or eukaryotic pathogens in 23% (38/163) of NMFI cases. Bacteria were the most common, with relapsing fever Borrelia and spotted fever Rickettsia found in 15.5% and 3.8% of cases, respectively. Four viral pathogens were found in a total of 7 febrile cases (3.5%). Sequencing also detected undiagnosed Plasmodium, including one putative P. ovale infection. We developed a logistic regression model that can distinguish Borrelia from NMFIs with similar presentation based on symptoms and vital signs (F1 score: 0.823). These results highlight the challenge and importance of improved diagnostics, especially for Borrelia, to support diagnosis and surveillance
    corecore