18 research outputs found

    Evaluation of plastic and steel bins for protection of stored maize against Insect Infestation in Ghana: Poster

    Get PDF
    Maize is a staple food in Ghana where there is ever increasing demand for its use to also support poultry and livestock production. However, post-harvest loss of maize is high in Ghana. This study evaluated the effectiveness of plastic and steel bins as bulk storage structures to reduce maize post-harvest loss in Ejura, Ghana during the period from February 2016 to January 2017. Maize pre-disinfested with a solar biomass hybrid dryer was stored in the following treatments: i. a white 7-ton plastic bin filled with untreated maize, ii. agreen 7-ton plastic bin filled with untreated maize, iii.a 6-ton Kikapu steel bin filled with untreated maize, iv. six 50-kg polypropylene (PP) bags filled with maize treated with Betallic Super (80 g pirimiphos-methyl and 15 g permethrin per liter as an emulsifiable concentrate (EC)), and v. six 50-kg PP bags filled with untreated maize ascontrol. Moisture content, insect pests, insect damaged kernels (IDK), grain weight loss, aflatoxin and fumonisin levels data were collected monthly. Sitophilus zeamais, Tribolium castaneum, Cathartus quadricollis, and Cryptolestes ferrugineus were the dominant insect species collected from maize samples. At the end of 12 months of storage, % IDK in the control was >17% while IDK values in the other treatments were <3%. Mean grain weight losses of <1% were recorded in the bin treatments. Mycotoxin levels in the control were above the allowable threshold of 15 ppb. Our data suggest that use of plastic and steel bins has potential to reduce post-harvest loss of maize during storage.Maize is a staple food in Ghana where there is ever increasing demand for its use to also support poultry and livestock production. However, post-harvest loss of maize is high in Ghana. This study evaluated the effectiveness of plastic and steel bins as bulk storage structures to reduce maize post-harvest loss in Ejura, Ghana during the period from February 2016 to January 2017. Maize pre-disinfested with a solar biomass hybrid dryer was stored in the following treatments: i. a white 7-ton plastic bin filled with untreated maize, ii. agreen 7-ton plastic bin filled with untreated maize, iii.a 6-ton Kikapu steel bin filled with untreated maize, iv. six 50-kg polypropylene (PP) bags filled with maize treated with Betallic Super (80 g pirimiphos-methyl and 15 g permethrin per liter as an emulsifiable concentrate (EC)), and v. six 50-kg PP bags filled with untreated maize ascontrol. Moisture content, insect pests, insect damaged kernels (IDK), grain weight loss, aflatoxin and fumonisin levels data were collected monthly. Sitophilus zeamais, Tribolium castaneum, Cathartus quadricollis, and Cryptolestes ferrugineus were the dominant insect species collected from maize samples. At the end of 12 months of storage, % IDK in the control was >17% while IDK values in the other treatments were <3%. Mean grain weight losses of <1% were recorded in the bin treatments. Mycotoxin levels in the control were above the allowable threshold of 15 ppb. Our data suggest that use of plastic and steel bins has potential to reduce post-harvest loss of maize during storage

    <i>Habrobracon hebetor</i> and <i>Pteromalus cerealellae</i> as Tools in Post-Harvest Integrated Pest Management

    No full text
    Consumers are increasingly demanding pesticide-free grain/legumes and processed foods. Additionally, there are more restrictions, or complete loss, of insecticides labelled for use in managing stored grain insects in post-harvest ecosystems. Suppression of post-harvest pests using parasitic wasps is a more sustainable alternative than chemical pesticides. Habrobracon hebetor (Say) (Hymenoptera: Braconidae) and Pteromalus cerealellae Ashmead (Hymenoptera: Pteromalidae) are two important parasitoids that limit economically important pests of stored products. Host searching ability and reproductive performances of H. hebetor and P. cerealellae depend on a wide range of factors, such as host species, commodities, and environmental conditions. Further, use of entomopathogens can complement the ability of parasitoids to regulate pest populations. This review provides information on aspects of H. hebetor and P. cerealellae biology and successful regulation of post-harvest pest populations

    Prospects of entomopathogens in post-harvest integrated pest management: Presentation

    No full text
    In these exploratory experiments, entomopathogenic nematodes and fungi were investigated for the management of the populations of postharvest insect pests. Nematodes were screened for pathogenicity to Plodia interpunctella (Hübner), while nematodes and fungi were investigated for virulence to the maize weevil, Sitophilus zeamais (Motschulsky). Adults and larvae of P. interpunctellea were screened for susceptibility to the following six nematodes: Heterorhabitis bacteriophora Poinar (HP88, Lewiston and Oswego strains); H. indica Poinar, Karunakar and David (Homl strain); H. marelatus Liu and Berry (Point Reyes strain); H. megidis Poinar, Jackson, and Klein (UK211 strain); and H. zealandica Poinar (NZH3 strain). The nematodes that had the highest virulence to larvae and adults of P. interpunctellea were H. indica, H. megidis, and H. marelatus. Six strains of nematodes were studied, namely H. bacteriophora, H. indica, H. georgiana (K22), Steinernema feltiae SN and S. carpocapsae. All strains of fungi, Beauveria bassiana (GHA) and Metarhizium brunneum (F52) were evaluated for infectivity to adults of S. zeamais. The two strains of Steinernematidae nematodes and a strain of fungus, B. bassiana were found to cause significant mortality of the weevils compared to the rest of the entomopathogens and the control. To demonstrate the practical application of entomopathogens, wettable dust of B. bassiana were dispensed on jute bags after which weevils were exposed to the treated surfaces for 30 min. The exposed weevils recorded between 90 to 100% mortality 14-d after exposure. Additional study demonstrated that the parasitoid, Habrobracon hebetor (Say) (Hymenoptera: Braconidae) could be integrated with entomopathogenic nematodes. These experiments demonstrate the potential usefulness of entomopathogens in the management of stored product Lepidopteran and Coleopteran pests.In these exploratory experiments, entomopathogenic nematodes and fungi were investigated for the management of the populations of postharvest insect pests. Nematodes were screened for pathogenicity to Plodia interpunctella (Hübner), while nematodes and fungi were investigated for virulence to the maize weevil, Sitophilus zeamais (Motschulsky). Adults and larvae of P. interpunctellea were screened for susceptibility to the following six nematodes: Heterorhabitis bacteriophora Poinar (HP88, Lewiston and Oswego strains); H. indica Poinar, Karunakar and David (Homl strain); H. marelatus Liu and Berry (Point Reyes strain); H. megidis Poinar, Jackson, and Klein (UK211 strain); and H. zealandica Poinar (NZH3 strain). The nematodes that had the highest virulence to larvae and adults of P. interpunctellea were H. indica, H. megidis, and H. marelatus. Six strains of nematodes were studied, namely H. bacteriophora, H. indica, H. georgiana (K22), Steinernema feltiae SN and S. carpocapsae. All strains of fungi, Beauveria bassiana (GHA) and Metarhizium brunneum (F52) were evaluated for infectivity to adults of S. zeamais. The two strains of Steinernematidae nematodes and a strain of fungus, B. bassiana were found to cause significant mortality of the weevils compared to the rest of the entomopathogens and the control. To demonstrate the practical application of entomopathogens, wettable dust of B. bassiana were dispensed on jute bags after which weevils were exposed to the treated surfaces for 30 min. The exposed weevils recorded between 90 to 100% mortality 14-d after exposure. Additional study demonstrated that the parasitoid, Habrobracon hebetor (Say) (Hymenoptera: Braconidae) could be integrated with entomopathogenic nematodes. These experiments demonstrate the potential usefulness of entomopathogens in the management of stored product Lepidopteran and Coleopteran pests

    A Review of Insect Pest Management in Vegetable Crop Production in Nigeria

    No full text
    Insect pest infestations and damage can limit the production of vegetables in the farming systems in Nigeria. This review looks at integrated insect pest management as a possible panacea for resolving insect pest issues in vegetable crops. The main vegetable crops which include okra, tomatoes, chilli peppers, cucumbers, green amaranth, carrots and onions are highlighted. The major insect pests of the various vegetables which include foliage beetles, caterpillars, aphids, fruit flies, stink bugs, and grasshoppers are also mentioned. The various control measures that have been empirically verified for the mitigation of the impact of these insect pests, including the application of synthetic insecticides, modification of agronomic practices, use of resistant varieties, application of botanicals, biological and mechanical controls, are discussed. Studies which have been carried out attempting to integrate two or more of the control strategies for better insect pest control are also reviewed. Strategies that can be put in place for the integrated pest management of vegetable insect pests in Nigeria are considered. Among the IPM (Integrated Pest Management) practices instituted for the mitigation of pest infestations on vegetable crops in Nigeria, intercropping of suitable vegetables in combination with the application of aqueous extracts of Azadirachta indica and Piper guineense seeds under good farm hygiene and sanitation proved to be most successful

    A Review of Insect Pest Management in Vegetable Crop Production in Nigeria

    No full text
    Insect pest infestations and damage can limit the production of vegetables in the farming systems in Nigeria. This review looks at integrated insect pest management as a possible panacea for resolving insect pest issues in vegetable crops. The main vegetable crops which include okra, tomatoes, chilli peppers, cucumbers, green amaranth, carrots and onions are highlighted. The major insect pests of the various vegetables which include foliage beetles, caterpillars, aphids, fruit flies, stink bugs, and grasshoppers are also mentioned. The various control measures that have been empirically verified for the mitigation of the impact of these insect pests, including the application of synthetic insecticides, modification of agronomic practices, use of resistant varieties, application of botanicals, biological and mechanical controls, are discussed. Studies which have been carried out attempting to integrate two or more of the control strategies for better insect pest control are also reviewed. Strategies that can be put in place for the integrated pest management of vegetable insect pests in Nigeria are considered. Among the IPM (Integrated Pest Management) practices instituted for the mitigation of pest infestations on vegetable crops in Nigeria, intercropping of suitable vegetables in combination with the application of aqueous extracts of Azadirachta indica and Piper guineense seeds under good farm hygiene and sanitation proved to be most successful
    corecore