44 research outputs found
Predictors of Antibiotics Co-prescription with Antimalarials for Patients Presenting with Fever in Rural Tanzania.
Successful implementation of malaria treatment policy depends on the prescription practices for patients with malaria. This paper describes prescription patterns and assesses factors associated with co-prescription of antibiotics and artemether-lumefantrine (AL) for patients presenting with fever in rural Tanzania. From June 2009 to September 2011, a cohort event monitoring program was conducted among all patients treated at 8 selected health facilities in Ifakara and Rufiji Health and Demographic Surveillance System (HDSS).It included all patients presenting with fever and prescribed with AL. Logistic regression was used to model the predictors on the outcome variable which is co-prescription of AL and antibiotics on a single clinical visit. A cohort of 11,648 was recruited and followed up with 92% presenting with fever. Presumptive treatment was used in 56% of patients treated with AL. On average 2.4 (1 -- 7) drugs was prescribed per encounter, indicating co-prescription of AL with other drugs. Children under five had higher odds of AL and antibiotics co-prescription (OR = 0.63, 95% CI: 0.46 -- 0.85) than those aged more than five years. Patients testing negative had higher odds (OR = 2.22, 95%CI: 1.65 -- 2.97) of AL and antibiotics co-prescription. Patients receiving treatment from dispensaries had higher odds (OR = 1.45, 95% CI: 0.84 -- 2.30) of AL and antibiotics co-prescription than those from served in health centres even though the deference was not statistically significant. Regardless the fact that Malaria is declining but due to lack of laboratories and mRDT in most health facilities in the rural areas, clinicians are still treating malaria presumptively. This leads them to prescribe more drugs to treat all possibilities
Catalysing sustainable fuel and chemical synthesis
Concerns over the economics of proven fossil fuel reserves, in concert with government and public acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from such combustible carbon, are driving academic and commercial research into new sustainable routes to fuel and chemicals. The quest for such sustainable resources to meet the demands of a rapidly rising global population represents one of this century’s grand challenges. Here, we discuss catalytic solutions to the clean synthesis of biodiesel, the most readily implemented and low cost, alternative source of transportation fuels, and oxygenated organic molecules for the manufacture of fine and speciality chemicals to meet future societal demands
Diesel-like hydrocarbons from catalytic deoxygenation of stearic acid over supported pd nanoparticles on SBA-15 catalysts
Palladium catalysts with different loading on SBA-15 have been prepared using a direct synthesis method and characterized with X-ray diffraction, micrographimages, and X-ray photoelectron spectroscopy. Mesoporous Pd-SBA-15 was an active and selective catalyst for deoxygenation of stearic acid in dodecane as a solvent at 300 °C under 17 bar of 5 vol% H2 in argon as a carrier gas in a semibatch reactor