16 research outputs found

    Regulation of Energy Substrate Metabolism in Endurance Exercise

    No full text
    The human body requires energy to function. Adenosine triphosphate (ATP) is the cellular currency for energy-requiring processes including mechanical work (i.e., exercise). ATP used by the cells is ultimately derived from the catabolism of energy substrate molecules—carbohydrates, fat, and protein. In prolonged moderate to high-intensity exercise, there is a delicate interplay between carbohydrate and fat metabolism, and this bioenergetic process is tightly regulated by numerous physiological, nutritional, and environmental factors such as exercise intensity and duration, body mass and feeding state. Carbohydrate metabolism is of critical importance during prolonged endurance-type exercise, reflecting the physiological need to regulate glucose homeostasis, assuring optimal glycogen storage, proper muscle fuelling, and delaying the onset of fatigue. Fat metabolism represents a sustainable source of energy to meet energy demands and preserve the ‘limited’ carbohydrate stores. Coordinated neural, hormonal and circulatory events occur during prolonged endurance-type exercise, facilitating the delivery of fatty acids from adipose tissue to the working muscle for oxidation. However, with increasing exercise intensity, fat oxidation declines and is unable to supply ATP at the rate of the exercise demand. Protein is considered a subsidiary source of energy supporting carbohydrates and fat metabolism, contributing to approximately 10% of total ATP turnover during prolonged endurance-type exercise. In this review we present an overview of substrate metabolism during prolonged endurance-type exercise and the regulatory mechanisms involved in ATP turnover to meet the energetic demands of exercise

    Solanum Procumbens-Derived Zinc Oxide Nanoparticles Suppress Lung Cancer In Vitro through Elevation of ROS

    No full text
    Lung cancer is one of the cancers with high mortality rate. The current therapeutic regimens have only limited success rate. The current work highlights the potential of Solanum procumbens-derived zinc oxide nanoparticle (SP-ZnONP)-induced apoptosis in A549 lung cancer cells. Synthesized nanoparticles were confirmed by UV-Vis spectrophotometry, X-ray diffraction (XRD), dynamic light scattering analysis (DLS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and photoluminescence analysis. Lactate dehydrogenase (LDH), cytotoxicity, and cell viability assays revealed that the SP-ZnONP caused the cell death and the inhibition concentration (IC50) was calculated to be 61.28 μg/mL. Treatment with SP-ZnONPs caused morphological alterations in cells, such as rounding, which may have been caused by the substance’s impact on integrins. Acridine orange/ethidium bromide dual staining revealed that the cells undergo apoptosis in a dose-dependent manner, which indicates the cell death. Furthermore, reactive oxygen species (ROS) were examined and it was shown that the nanoparticles elevated ROS levels, which led to lipid peroxidation. In short, the SP-ZnONPs increase the level of ROS, which in turn causes lipid peroxidation results in apoptosis. On the other hand, the SP-ZnONPs decrease nitric oxide level in A549 cells in a dose-dependent manner, which also supports the apoptosis. In conclusion, SP-ZnONPs would become a promising treatment option for lung cancer

    Inhibiting the PI3K/AKT/mTOR signalling pathway with copper oxide nanoparticles from Houttuynia cordata plant: attenuating the proliferation of cervical cancer cells

    No full text
    Cervical cancer is the most important female genital cancer that develops from the cervix, a lower part of uterus. Houttuynia cordata is ubiquitously present in Asian countries, and traditionally prescribed to treat infections and oedema. Our study emphasizes on biological synthesis route for developing copper nanocomplex using Houttuynia cordata (Hc-CuONPs) plant extract. The UV–visible spectroscopy study of Hc-CuONPs revealed the maximum peak at 350 nm, which proved the formation of Hc-CuONPs and FT-IR absorption peaks revealed the existence of different functional groups. The results of high-resolution TEM and X-ray diffraction studies revealed that the Hc-CuONPs have face centred cubic structure along with 40–45 nm in size. The temperature conditions of the synthesized Hc-CuONPs were spherical and circular morphologies. Furthermore, the Hc-CuONPs (IC50=5 µg/ml) exhibited toxicity on cervical cancer cells (HeLa). The intracellular reactive oxygen species (ROS) level in the control and Hc-CuONPs-treated HeLa cells was monitored by DCFH-DA staining and the apoptotic cell death was detected by using the dual (AO/EtBr) staining, propidium iodide and DAPI staining assays. Our results from the fluorescent staining analysis evidenced that the Hc-CuONPs have inhibited the cell proliferation and promoted the apoptotic cell death in HeLa cells. The Hc-CuONPs promoted the apoptosis by targeting the PI3K/Akt signalling pathways in HeLa cells. Our results explored that the Hc-CuONPs are effective against in vitro HeLa cancer cells

    Potential Predictors of Poor Prognosis among Severe COVID-19 Patients: A Single-Center Study

    No full text
    Background. Timely detection of the progression of the highly contagious coronavirus disease (COVID-19) is of utmost importance for management and intervention for patients in intensive care (ICU). Aim. This study aims to better understand this new infection and report the changes in the various laboratory tests identified in critically ill patients and associated with poor prognosis among COVID-19 patients admitted to the ICU. Methods. This was a retrospective study that included 160 confirmed SARS-CoV-2-positive patients. Results. Elevated serum ferritin, D-dimer, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and nonconjugated bilirubin levels were present in 139 (96%), 131 (96%), 107 (68%), 52 (34%), and 89 (70%) patients, respectively. Renal parameters were abnormal in a significant number of cases with elevated creatinine and blood urea nitrogen in 93 (62%) and 102 (68%) cases, respectively. Hematological profiles revealed lower red blood cell count, hemoglobin, eosinophils, basophils, monocytes, and lymphocytes in 90 (57%), 103 (65%), 89 (62%), 105 (73%), 35 (24%), and 119 (83%) cases, respectively. The neutrophil count was found to increase in 71.3% of the cases. There was significantly higher mortality (83%) among patients older than 60 years p=0.001 and in female patients (75%) p=0.012. Patients with lung diseases had a poor outcome compared to patients with other comorbidities p=0.002. There was a significant association between elevated D-dimer levels and increased mortality p=0.003. Elevated levels of AST, creatinine, blood urea nitrogen, and bilirubin were significantly associated with unfavorable outcomes. Conclusion. Different parameters can be used to predict disease prognosis, especially the risk of poor prognosis. Accurate diagnosis and monitoring of disease progression from the early stages will help in reducing mortality and unfavorable outcomes

    Phytochemistry, antioxidant, anticancer, and acute toxicity of traditional medicinal food Biarum bovei (Kardeh)

    No full text
    Abstract Background The Biarum species (Kardeh) has been consumed as a traditional functional food and medicine for decades. The current study investigates the phytochemistry, in-vitro and in-vivo bioactivities of methanol extracts of B. bovei. Methods The Gas-chromatography mass spectrophotometer (GS/GS-MS) was used to analyze the phytochemical profile of the methanol extracts of B. bovei leaves and corms. The B. bovei extracts (BBE) were also investigated for in-vitro antioxidant, anticancer, and in-vivo acute toxicity (2000 mg/kg) activities. Results The chemical profiling of BBE revealed mainly fatty acids, phytosterol, alcohols, and hydrocarbon compounds. Namely, Linoleic acid, eliadic acid, palmitic acid, 22,23-dihydro-stigmasterol, and campesterol. The antioxidant activity of BBE ranged between 0.24–3.85 μg TE/mL based on different assays. The extracts also exhibited significant anticancer activity against DU-145 (prostate cancer cells), MCF-7 (human breast adenocarcinoma), and HeLa (human cervical cancer) cell lines with IC50 values ranging between 22.73–44.24 μg/mL. Rats fed on 2000 mg/kg dosage of BBE showed absence of any toxicological sign or serum biochemical changes. Conclusion The detected phytochemicals and bioactivities of BBE scientifically backup the folkloric usage as an important source of nutraceuticals and alternative medicine for oxidative stress-related diseases and carcinogenesis inhibition

    In Vivo and In Vitro Enhanced Tumoricidal Effects of Metformin, Active Vitamin D3, and 5-Fluorouracil Triple Therapy against Colon Cancer by Modulating the PI3K/Akt/PTEN/mTOR Network

    No full text
    Chemoresistance to 5-fluorouracil (5-FU) is common during colorectal cancer (CRC) treatment. This study measured the chemotherapeutic effects of 5-FU, active vitamin D3 (VD3), and/or metformin single/dual/triple regimens as complementary/alternative therapies. Ninety male mice were divided into: negative and positive (PC) controls, and 5-FU, VD3, Met, 5-FU/VD3, 5-FU/Met, VD3/Met, and 5-FU/VD3/Met groups. Treatments lasted four weeks following CRC induction by azoxymethane. Similar regimens were also applied in the SW480 and SW620 CRC cell lines. The PC mice had abundant tumours, markedly elevated proliferation markers (survivin/CCND1) and PI3K/Akt/mTOR, and reduced p21/PTEN/cytochrome C/caspase-3 and apoptosis. All therapies reduced tumour numbers, with 5-FU/VD3/Met being the most efficacious regimen. All protocols decreased cell proliferation markers, inhibited PI3K/Akt/mTOR molecules, and increased proapoptotic molecules with an apoptosis index, and 5-FU/VD3/Met revealed the strongest effects. In vitro, all therapies equally induced G1 phase arrest in SW480 cells, whereas metformin-alone showed maximal SW620 cell numbers in the G0/G1 phase. 5-FU/Met co-therapy also showed the highest apoptotic SW480 cell numbers (13%), whilst 5-FU/VD3/Met disclosed the lowest viable SW620 cell percentages (81%). Moreover, 5-FU/VD3/Met revealed maximal inhibitions of cell cycle inducers (CCND1/CCND3), cell survival (BCL2), and the PI3K/Akt/mTOR molecules alongside the highest expression of cell cycle inhibitors (p21/p27), proapoptotic markers (BAX/cytochrome C/caspase-3), and PTEN in both cell lines. In conclusion, metformin monotherapy was superior to VD3, whereas the 5-FU/Met protocol showed better anticancer effects relative to the other dual therapies. However, the 5-FU/VD3/Met approach displayed the best in vivo and in vitro tumoricidal effects related to cell cycle arrest and apoptosis, justifiably by enhanced modulations of the PI3K/PTEN/Akt/mTOR pathway

    Pinostrobin attenuates azoxymethane-induced colorectal cytotoxicity in rats through augmentation of apoptotic Bax/Bcl-2 proteins and antioxidants

    No full text
    Objectives: Pinostrobin (5-hydroxy-7-methoxyflavanone; PN) is a natural active ingredient with numerous biological activities extensively utilized in tumour chemotherapy. The present study investigates the chemo-preventive potentials of PN on azoxymethane-mediated colonic aberrant crypt foci in rats. Methods: Sprague Dawley rats clustered into five groups, normal control (A) and cancer controls were subcutaneously injected with normal saline and 15 mg/kg azoxymethane, respectively, and nourished on 10% tween 20 and fed on 10% tween 20; reference control (C), injected with 15 mg/kg azoxymethane and injected (intraperitoneal) with 35 mg/kg 5-fluorouracil (5-FU); D and E rat groups received a subcutaneous injection of 15 mg/kg azoxymethane and nourished on 30 and 60 mg/kg of PN, respectively. Results: The acute toxicity trial showed a lack of any abnormal signs or mortality in rats ingested with 250 and 500 mg/kg of PN. The gross morphology of colon tissues revealed significantly lower total colonic aberrant crypt foci incidence in PN-treated rats than that of cancer controls. Histological examination of colon tissues showed increased aberrant crypt foci availability with bizarrely elongated nuclei, stratified cells and higher depletion of the submucosal glands in cancer controls. PN treatment caused positive modulation of apoptotic (Bax and Bcl-2) proteins and inflammatory cytokines (TNF-α, IL-6 and IL-10). Moreover, rats fed on PN had significantly higher antioxidants (superoxide dismutase) and lower malondialdehyde concentrations in their colon tissue homogenates. Conclusion: The chemoprotective efficiency of PN against azoxymethane-induced aberrant crypt foci is shown by lower aberrant crypt foci values and higher aberrant crypt foci inhibition percentage, possibly through augmentation of genes responsible for apoptotic cascade and inflammations originating from azoxymethane oxidative stress insults

    Comprehensive review of melatonin as a promising nutritional and nutraceutical supplement

    No full text
    Background: Melatonin is an indoleamine hormone secreted by the pineal gland at night and has an essential role in regulating human circadian rhythms (the internal 24-h clock) and sleep-wake patterns. However, it has recently gained considerable attention for its demonstrated ability in disease management. This review discusses the major biological activities of melatonin, its metabolites as nutritional supplements, and its bioavailability in food sources. Methods: The information acquisition process involved conducting a comprehensive search across academic databases including PubMed, Scopus, Wiley, Embase, and Springer using relevant keywords. Only the most recent, peer-reviewed articles published in the English language were considered for inclusion. Results: The molecular mechanisms by which melatonin induces its therapeutic effects have been the subject of various studies. Conclusion: While melatonin was initially understood to only regulate circadian rhythms, recent studies indicate that it has a far-reaching effect on various organs and physiological systems, such as immunity, cardiovascular function, antioxidant defense, and lipid hemostasis. As a potent antioxidant, anti-cancer, anti-inflammatory, and immunoregulatory agent, multiple therapeutic applications have been proposed for melatonin
    corecore