24 research outputs found

    Jungle Honey Enhances Immune Function and Antitumor Activity

    Get PDF
    Jungle honey (JH) is collected from timber and blossom by wild honey bees that live in the tropical forest of Nigeria. JH is used as a traditional medicine for colds, skin inflammation and burn wounds as well as general health care. However, the effects of JH on immune functions are not clearly known. Therefore, we investigated the effects of JH on immune functions and antitumor activity in mice. Female C57BL/6 mice were injected with JH (1 mg/mouse/day, seven times intra-peritoneal). After seven injections, peritoneal cells (PC) were obtained. Antitumor activity was assessed by growth of Lewis Lung Carcinoma/2 (LL/2) cells. PC numbers were increased in JH-injected mice compared to control mice. In Dot Plot analysis by FACS, a new cell population appeared in JH-injected mice. The percent of Gr-1 surface antigen and the intensity of Gr-1 antigen expression of PC were increased in JH-injected mice. The new cell population was neutrophils. JH possessed chemotactic activity for neutrophils. Tumor incidence and weight were decreased in JH-injected mice. The ratio of reactive oxygen species (ROS) producing cells was increased in JH-injected mice. The effective component in JH was fractionized by gel filtration using HPLC and had an approximate molecular weight (MW) of 261. These results suggest that neutrophils induced by JH possess potent antitumor activity mediated by ROS and the effective immune component of JH is substrate of MW 261

    月面環境におけるRC構造の温度応力と損傷解析

    No full text

    Blood asymmetric dimethylarginine and nitrite/nitrate concentrations in short-stature children born small for gestational age with and without growth hormone therapy

    No full text
    Objective To investigate the basal amino acid metabolism and impact of growth hormone (GH) therapy in short-stature children born small for gestational age (short SGA children). Methods In this age-matched case-control study, the basal blood levels of amino acids, asymmetric dimethylarginine (ADMA), and nitrite/nitrate (NOx) were compared between 24 short SGA children and 25 age-matched normal children. Changes in these parameters were assessed for 12 months in 12 short SGA children initiating GH therapy (Group A) and 12 age-matched short SGA children without GH therapy (Group B). Results The arginine levels were significantly lower in the short SGA than in normal children. The ADMA levels were significantly higher and NOx levels were significantly lower in the short SGA than normal children. In Group A, the ADMA level was significantly lower and NOx level was significantly higher at 6 months than at baseline. At 12 months, the ADMA level in Group A began to increase, but the NOx level remained the same. Group B showed no significant changes. Conclusions This study is the first to show that ADMA is promoted and nitric oxide is suppressed in short SGA children and that GH therapy affects the production of ADMA and nitric oxide

    Exosomal miR-1290 is a potential biomarker of high-grade serous ovarian carcinoma and can discriminate patients from those with malignancies of other histological types

    No full text
    Abstract Background microRNAs (miRNAs) stably exist in circulating blood encapsulated in extracellular vesicles such as exosomes; therefore, serum miRNAs have the potential to serve as novel cancer biomarkers. New diagnostic markers to detect high grade serous ovarian cancer (HGSOC) are urgently needed. The aim of this study was to identify miRNAs specific to HGSOC and analyze whether serum miRNA can discriminate HGSOC patients from healthy controls or patients with ovarian malignancies of other histological types. Methods Exosomes from ovarian cancer cell lines were collected and exosomal miRNAs extracted. miRNA microarray analysis revealed several elevated miRNAs specific to HGSOC. Among these, we focused on miR-1290. Sera from 70 ovarian cancer patients and 13 healthy controls were gathered and its expression levels detected by quantitative real-time polymerase chain reaction. Results In HGSOC patients, serum miR-1290 was significantly overexpressed compared to in healthy controls (3.52 fold; P = 0.03), unlike in patients with ovarian cancers of other histological types. The relative expression of miR-1290 was higher in advanced stages of HGSOC than in early stages (4.23 vs. 1.58; P = 0.23). Its expression significantly decreased after operation (5.87 to 1.17; P < 0.01), indicating that this miRNA reflects tumor burden. A receiver operating characteristic curve analysis showed that at the cut-off of 1.20, the sensitivity and specificity were 63% and 85% respectively for discriminating patients with HGSOC (area under the curve [AUC] = 0.71) from healthy controls, and at the cut-off of 1.55, the sensitivity and specificity were 47% and 85% respectively for discriminating patients with HGSOC (AUC = 0.76) from those with malignancies of other histological types. Conclusions Serum miR-1290 is significantly elevated in patients with HGSOC and can be used to discriminate these patients from those with malignancies of other histological types; it is a new potential diagnostic biomarker for HGSOC

    A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs

    Get PDF
    Land plant shoot structures evolved a diversity of lateral organs as morphological adaptations to the terrestrial environment, with lateral organs arising independently in different lineages. Vascular plants and bryophytes (basally diverging land plants) develop lateral organs from meristems of sporophytes and gametophytes, respectively. Understanding the mechanisms of lateral organ development among divergent plant lineages is crucial for understanding the evolutionary process of morphological diversification of land plants. However, our current knowledge of lateral organ differentiation mechanisms comes almost entirely from studies of seed plants, and thus, it remains unclear how these lateral structures evolved and whether common regulatory mechanisms control the development of analogous lateral organs. Here, we performed a mutant screen in the liverwort Marchantia polymorpha, a bryophyte, which produces gametophyte axes with nonphotosynthetic scalelike lateral organs. We found that an Arabidopsis LIGHT-DEPENDENT SHORT HYPOCOTYLS 1 and Oryza G1 (ALOG) family protein, named M. polymorpha LATERAL ORGAN SUPRESSOR 1 (MpLOS1), regulates meristem maintenance and lateral organ development in Marchantia. A mutation in MpLOS1, preferentially expressed in lateral organs, induces lateral organs with misspecified identity and increased cell number and, furthermore, causes defects in apical meristem maintenance. Remarkably, MpLOS1 expression rescued the elongated spikelet phenotype of a MpLOS1 homolog in rice. This suggests that ALOG genes regulate the development of lateral organs in both gametophyte and sporophyte shoots by repressing cell divisions. We propose that the recruitment of ALOG-mediated growth repression was in part responsible for the convergent evolution of independently evolved lateral organs among highly divergent plant lineages, contributing to the morphological diversification of land plants
    corecore