51 research outputs found

    Pharmacological inhibition of RAS overcomes FLT3 inhibitor resistance in FLT3-ITD+ AML through AP-1 and RUNX1

    Get PDF
    \ua9 2024 The Author(s). AML is characterized by mutations in genes associated with growth regulation such as internal tandem duplications (ITD) in the receptor kinase FLT3. Inhibitors targeting FLT3 (FLT3i) are being used to treat patients with FLT3-ITD+ but most relapse and become resistant. To elucidate the resistance mechanism, we compared the gene regulatory networks (GRNs) of leukemic cells from patients before and after relapse, which revealed that the GRNs of drug-responsive patients were altered by rewiring their AP-1-RUNX1 axis. Moreover, FLT3i induces the upregulation of signaling genes, and we show that multiple cytokines, including interleukin-3 (IL-3), can overcome FLT3 inhibition and send cells back into cycle. FLT3i leads to loss of AP-1 and RUNX1 chromatin binding, which is counteracted by IL-3. However, cytokine-mediated drug resistance can be overcome by a pan-RAS inhibitor. We show that cytokines instruct AML growth via the transcriptional regulators AP-1 and RUNX1 and that pan-RAS drugs bypass this barrier

    Snack and Relax®

    No full text

    Ruthenium-Catalyzed N-Alkylation of Amines and Sulfonamides Using Borrowing Hydrogen Methodology

    No full text
    The alkylation of amines by alcohols has been achieved using 0.5 mol % [Ru(p-cymene)Cl(2)](2) with the bidentate phosphines dppf or DPEphos as the catalyst. Primary amines have been converted into secondary amines, and secondary amines into tertiary amines, including the syntheses of Piribedil, Tripelennamine, and Chlorpheniramine. N-Heterocyclization reactions of primary amines are reported, as well as alkylation reactions of primary sulfonamides. Secondary alcohols require more forcing conditions than primary alcohols but are still effective alkylating agents in the presence of this catalyst

    Thermal unfolding of smooth muscle and nonmuscle tropomyosin alpha-homodimers with alternatively spliced exons

    No full text
    We used differential scanning calorimetry (DSC) and circular dichroism (CD) to investigate thermal unfolding of recombinant fibroblast isoforms of alpha-tropomyosin (Tm) in comparison with that of smooth muscle Tm. These two nonmuscle Tm isoforms 5a and 5b differ internally only by exons 6b/6a, and they both differ from smooth muscle Tm by the N-terminal exon 1b which replaces the muscle-specific exons 1a and 2a. We show that the presence of exon 1b dramatically decreases the measurable calorimetric enthalpy of the thermal unfolding of Tm observed with DSC, although it has no influence on the alpha-helix content of Tm or on the end-to-end interaction between Tm dimers. The results suggest that a significant part of the molecule of fibroblast Tm (but not smooth muscle Tm) unfolds noncooperatively, with the enthalpy no longer visible in the cooperative thermal transitions measured. On the other hand, both DSC and CD studies show that replacement of muscle exons 1a and 2a by nonmuscle exon 1b not only increases the thermal stability of the N-terminal part of Tm, but also significantly stabilizes Tm by shifting the major thermal transition of Tm to higher temperature. Replacement of exon 6b by exon 6a leads to additional increase in the alpha-Tm thermal stability. Thus, our data show for the first time a significant difference in the thermal unfolding between muscle and nonmuscle alpha-Tm isoforms, and indicate that replacement of alternatively spliced exons alters the stability of the entire Tm molecule
    • …
    corecore