2 research outputs found
Development of Potential Multi-Target Inhibitors for Human Cholinesterases and Beta-Secretase 1: A Computational Approach
Alzheimer’s disease causes chronic neurodegeneration and is the leading cause of dementia
in the world. The causes of this disease are not fully understood but seem to involve two essential
cerebral pathways: cholinergic and amyloid. The simultaneous inhibition of AChE, BuChE, and
BACE-1, essential enzymes involved in those pathways, is a promising therapeutic approach to treat
the symptoms and, hopefully, also halt the disease progression. This study sought to identify triple
enzymatic inhibitors based on stereo-electronic requirements deduced from molecular modeling
of AChE, BuChE, and BACE-1 active sites. A pharmacophore model was built, displaying four
hydrophobic centers, three hydrogen bond acceptors, and one positively charged nitrogen, and
used to prioritize molecules found in virtual libraries. Compounds showing adequate overlapping
rates with the pharmacophore were subjected to molecular docking against the three enzymes and
those with an adequate docking score (n = 12) were evaluated for physicochemical and toxicological
parameters and commercial availability. The structure exhibiting the greatest inhibitory potential
against all three enzymes was subjected to molecular dynamics simulations (100 ns) to assess the
stability of the inhibitor-enzyme systems. The results of this in silico approach indicate ZINC1733
can be a potential multi-target inhibitor of AChE, BuChE, and BACE-1, and future enzymatic assays
are planned to validate those results.PPBE and PPGCF/UEFS; Fundação de Amparo à Pesquisa
do Estado de Minas Gerais—FAPEMIG, grants APQ-02741-17, APQ-00855-19, APQ-01733-21, and
APQ-04559-22Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq-Brazil,
grants 305117/2017-3, 426261/2018-6Fellowship of 2021 (grant 310108/2020-9
Identification of a Novel Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase: In Vitro and In Silico Studies
The enhancement of cholinergic functions via acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition is considered a valuable therapeutic strategy for the treatment of Alzheimer’s disease. This study aimed to evaluate the in vitro effect of ZINC390718, previously filtered using computational approaches, on both cholinesterases and to characterize, using a molecular dynamics (MD) simulation, the possible binding mode of this compound inside the cholinesterase enzymes. The in vitro cytotoxicity effect was also investigated using a primary astrocyte-enriched glial cell culture. ZINC390718 presented in vitro dual inhibitory activity against AChE at a high micromolar range (IC50 = 543.8 µM) and against BuChE (IC50 = 241.1 µM) in a concentration-dependent manner, with greater activity against BuChE. The MD simulation revealed that ZINC390718 performed important hydrophobic and H-bond interactions with the catalytic residue sites on both targets. The residues that promoted the hydrophobic interactions and H-bonding in the AChE target were Leu67, Trp86, Phe123, Tyr124, Ser293, Phe295, and Tyr341, and on the BuChE target, they were Asp70, Tyr332, Tyr128, Ile442, Trp82, and Glu197. The cytotoxic effect of Z390718, evaluated via cell viability, showed that the molecule has low in vitro toxicity. The in vitro and in silico results indicate that ZINC390718 can be used as chemotype for the optimization and identification of new dual cholinesterase inhibitors