128 research outputs found
The novel HLA-C*03:04:01:47 allele sequence identified using Pacific biosciences SMRT sequencing
A novel variant of HLA-C*03:04:01:47 was identified using Pacific Biosciences SMRT sequencing platform
Aromaticity in cyanuric acid
This study analyzes the aromatic nature of cyanuric acid (hexahydrotriazine) and some of its derivatives, in terms of aromatic stabilization energy (ASE) and electronic behavior. The simplest molecule (C3N3O3H3) is the most aromatic item out of the entire set, but some of the others also display aromatic character. The structure of all the rings is analyzed considering their molecular orbitals as well as studying the inductive effect
Zebrafish arl6ip1 Is Required for Neural Crest Development during Embryogenesis
BACKGROUND:Although the embryonic expression pattern of ADP ribosylation factor-like 6 interacting protein 1 (Arl6ip1) has been reported, its function in neural crest development is unclear. METHODS/PRINCIPAL FINDINGS:We found that knockdown of Arl6ip1 caused defective embryonic neural crest derivatives that were particularly severe in craniofacial cartilages. Expressions of the ectodermal patterning factors msxb, dlx3b, and pax3 were normal, but the expressions of the neural crest specifier genes foxd3, snai1b, and sox10 were greatly reduced. These findings suggest that arl6ip1 is essential for specification of neural crest derivatives, but not neural crest induction. Furthermore, we revealed that the streams of crestin- and sox10-expressing neural crest cells, which migrate ventrally from neural tube into trunk, were disrupted in arl6ip1 morphants. This migration defect was not only in the trunk neural crest, but also in the enteric tract where the vagal-derived neural crest cells failed to populate the enteric nervous system. We found that this migration defect was induced by dampened Shh signaling, which may have resulted from defective cilia. These data further suggested that arl6ip1 is required for neural crest migration. Finally, by double-staining of TUNEL and crestin, we confirmed that the loss of neural crest cells could not be attributed to apoptosis. CONCLUSIONS/SIGNIFICANCE:Therefore, we concluded that arl6ip1 is required for neural crest migration and sublineage specification
Viral Hepatitis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65791/1/j.1365-4362.1981.tb00836.x.pd
Molecular Dynamics Simulation of Phosphorylated KID Post-Translational Modification
BACKGROUND:Kinase-inducible domain (KID) as transcriptional activator can stimulate target gene expression in signal transduction by associating with KID interacting domain (KIX). NMR spectra suggest that apo-KID is an unstructured protein. After post-translational modification by phosphorylation, KID undergoes a transition from disordered to well folded protein upon binding to KIX. However, the mechanism of folding coupled to binding is poorly understood. METHODOLOGY:To get an insight into the mechanism, we have performed ten trajectories of explicit-solvent molecular dynamics (MD) for both bound and apo phosphorylated KID (pKID). Ten MD simulations are sufficient to capture the average properties in the protein folding and unfolding. CONCLUSIONS:Room-temperature MD simulations suggest that pKID becomes more rigid and stable upon the KIX-binding. Kinetic analysis of high-temperature MD simulations shows that bound pKID and apo-pKID unfold via a three-state and a two-state process, respectively. Both kinetics and free energy landscape analyses indicate that bound pKID folds in the order of KIX access, initiation of pKID tertiary folding, folding of helix alpha(B), folding of helix alpha(A), completion of pKID tertiary folding, and finalization of pKID-KIX binding. Our data show that the folding pathways of apo-pKID are different from the bound state: the foldings of helices alpha(A) and alpha(B) are swapped. Here we also show that Asn139, Asp140 and Leu141 with large Phi-values are key residues in the folding of bound pKID. Our results are in good agreement with NMR experimental observations and provide significant insight into the general mechanisms of binding induced protein folding and other conformational adjustment in post-translational modification
Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis
Anthropogenic CO2 emissions are acidifying the world’s oceans. A growing body of evidence demonstrates that ocean acidification can impact survival, growth, development and physiology of marine invertebrates. Here, we tested the impact of long-term (up to 16 months) and trans-life-cycle (adult, embryo/larvae and juvenile) exposure to elevated pCO2 (1,200 μatm, compared to control 400 μatm) on the green sea urchin Strongylocentrotus droebachiensis. Female fecundity was decreased 4.5-fold when acclimated to elevated pCO2 for 4 months during reproductive conditioning, while no difference was observed in females acclimated for 16 months. Moreover, adult pre-exposure for 4 months to elevated pCO2 had a direct negative impact on subsequent larval settlement success. Five to nine times fewer offspring reached the juvenile stage in cultures using gametes collected from adults previously acclimated to high pCO2 for 4 months. However, no difference in larval survival was observed when adults were pre-exposed for 16 months to elevated pCO2. pCO2 had no direct negative impact on juvenile survival except when both larvae and juveniles were raised in elevated pCO2. These negative effects on settlement success and juvenile survival can be attributed to carry-over effects from adults to larvae and from larvae to juveniles. Our results support the contention that adult sea urchins can acclimate to moderately elevated pCO2 in a matter of a few months and that carry-over effects can exacerbate the negative impact of ocean acidification on larvae and juveniles
Phylogenetic Analysis of the Neks Reveals Early Diversification of Ciliary-Cell Cycle Kinases
NIMA-related kinases (Neks) have been studied in diverse eukaryotes, including the fungus Aspergillus and the ciliate Tetrahymena. In the former, a single Nek plays an essential role in cell cycle regulation; in the latter, which has more than 30 Neks in its genome, multiple Neks regulate ciliary length. Mammalian genomes encode an intermediate number of Neks, several of which are reported to play roles in cell cycle regulation and/or localize to centrosomes. Previously, we reported that organisms with cilia typically have more Neks than organisms without cilia, but were unable to establish the evolutionary history of the gene family
A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria
<p>Abstract</p> <p>Background</p> <p>An assessment of the correlation between anti-malarial treatment outcome and molecular markers would improve the early detection and monitoring of drug resistance by <it>Plasmodium falciparum</it>. The purpose of this systematic review was to determine the risk of treatment failure associated with specific polymorphisms in the parasite genome or gene copy number.</p> <p>Methods</p> <p>Clinical studies of non-severe malaria reporting on target genetic markers (SNPs for <it>pfmdr1</it>, <it>pfcrt</it>, <it>dhfr</it>, <it>dhps</it>, gene copy number for <it>pfmdr1</it>) providing complete information on inclusion criteria, outcome, follow up and genotyping, were included. Three investigators independently extracted data from articles. Results were stratified by gene, codon, drug and duration of follow-up. For each study and aggregate data the random effect odds ratio (OR) with 95%CIs was estimated and presented as Forest plots. An OR with a lower 95<sup>th </sup>confidence interval > 1 was considered consistent with a failure being associated to a given gene mutation.</p> <p>Results</p> <p>92 studies were eligible among the selection from computerized search, with information on <it>pfcrt </it>(25/159 studies), <it>pfmdr1 </it>(29/236 studies), <it>dhfr </it>(18/373 studies), <it>dhps </it>(20/195 studies). The risk of therapeutic failure after chloroquine was increased by the presence of <it>pfcrt </it>K76T (Day 28, OR = 7.2 [95%CI: 4.5–11.5]), <it>pfmdr1 </it>N86Y was associated with both chloroquine (Day 28, OR = 1.8 [95%CI: 1.3–2.4]) and amodiaquine failures (OR = 5.4 [95%CI: 2.6–11.3, p < 0.001]). For sulphadoxine-pyrimethamine the <it>dhfr </it>single (S108N) (Day 28, OR = 3.5 [95%CI: 1.9–6.3]) and triple mutants (S108N, N51I, C59R) (Day 28, OR = 3.1 [95%CI: 2.0–4.9]) and <it>dhfr</it>-<it>dhps </it>quintuple mutants (Day 28, OR = 5.2 [95%CI: 3.2–8.8]) also increased the risk of treatment failure. Increased <it>pfmdr1 </it>copy number was correlated with treatment failure following mefloquine (OR = 8.6 [95%CI: 3.3–22.9]).</p> <p>Conclusion</p> <p>When applying the selection procedure for comparative analysis, few studies fulfilled all inclusion criteria compared to the large number of papers identified, but heterogeneity was limited. Genetic molecular markers were related to an increased risk of therapeutic failure. Guidelines are discussed and a checklist for further studies is proposed.</p
Genomic Sequence around Butterfly Wing Development Genes: Annotation and Comparative Analysis
, where a whole-genome BAC library allows targeted access to large genomic regions. genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations) and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes)., both involved in multiple developmental processes including wing pattern formation
- …