172 research outputs found

    Enhanced mass activity and stability of bimetallic Pd-Ni nanoparticles on boron-doped diamond for direct ethanol fuel cell applications

    Get PDF
    In this work, electrochemical deposition of Pd (palladium) and bimetallic Pd-Ni (nickel) nanoparticles on oxygen-terminated boron-doped diamond (BDD) substrate is described for use as electrocatalyst in direct ethanol fuel cell. A potentiostatic two-step electrochemical method involving the electrodeposition of Ni nanoparticles on BDD followed by mono-dispersed Pd nanoparticles was used for the fabrication of Pd-Ni/BDD electrode. The electrocatalytic activity of the bimetallic Pd-Ni nanoparticles was evaluated in an alkaline solution containing ethanol and compared to that of the Pd nanoparticles alone. The bimetallic Pd-Ni nanoparticles showed 2.4 times higher mass activity than the similar systems from literature as well as stability when operated in alkaline media. Higher electrochemical response towards the electrooxidation of ethanol observed for the bimetallic electrocatalysts was due to the synergistic effects of the electron interaction at the interface of the two metals. Chronopotentiometric measurements revealed that Pd is more stable when anchored to the Ni nanoparticles. The optimised loading of mono-dispersed Pd on a foreign Ni metal as nanoparticles plays a crucial role in achieving a high mass (3.63 x 106 mA/g) and specific (10.53 mA/cm2) electrocatalytic activity of Pd towards ethanol electrooxidation in alkaline media

    Facile electrochemical synthesis of Pd nanoparticles with enhanced electrocatalytic properties from surfactant-free electrolyte

    Get PDF
    Synthesis of low-dimensional metallic nanoparticles with a clean surface, high dispersibility, and enhanced atomic surface distribution is extremely important, as these factors strongly influence the electrocatalytic properties of the nanoparticles. In this study, the early stage electrochemical nucleation and growth of palladium nanoparticles (Pd NPs) under potentiostatic control has been investigated on a Au(111) textured substrate. The size distribution and structural characterization of the ex situ as-deposited Pd NPs by means of high-resolution field emission gun-scanning electron microscopy (FEG-SEM) at different stages combined with electrochemical measurements revealed that the cluster of nuclei grew independently through the reduction of metal ions. The electrodeposited Pd NPs were very pure, as confirmed by X-ray photoelectron spectroscopy (XPS), owing to the surfactant-free green electrodeposition process, and they exhibited a highly dispersed average particle size of 2–5 nm. The average nanoparticle size becomes smaller with higher overpotentials for the same deposition time. The synthesized Pd NPs demonstrated the largest specific surface area (four times that of commercial Pd−C) and electrocatalytic activity in ferrocyanide/ferricyanide redox and ethanol electrooxidation processes (35 times that of commercial Pd−C). This work represents an important step in achieving the fundamental understanding of nucleation and growth of nanoparticles correlating the electrocatalytic performances

    High speed e-beam writing for large area photonic nanostructures-a choice of parameters

    Get PDF
    Photonic nanostructures are used for many optical systems and applications. However, some high-end applications require the use of electron-beam lithography (EBL) to generate such nanostructures. An important technological bottleneck is the exposure time of the EBL systems, which can exceed 24 hours per 1 cm2. Here, we have developed a method based on a target function to systematically increase the writing speed of EBL. As an example, we use as the target function the fidelity of the Fourier Transform spectra of nanostructures that are designed for thin film light trapping applications, and optimize the full parameter space of the lithography process. Finally, we are able to reduce the exposure time by a factor of 5.5 without loss of photonic performance. We show that the performances of the fastest written structures are identical to the original ones within experimental error. As the target function can be varied according to different purposes, the method is also applicable to guided mode resonant grating and many other areas. These findings contribute to the advancement of EBL and point towards making the technology more attractive for commercial applications

    A Study of the Bond and Equity Markets in Greece

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore