13 research outputs found
Proteome analysis of yeast response to various nutrient limitations
We compared the response of Saccharomyces cerevisiae to carbon (glucose) and nitrogen (ammonia) limitation in chemostat cultivation at the proteome level. Protein levels were differentially quantified using unlabeled and (15)N metabolically labeled yeast cultures. A total of 928 proteins covering a wide range of isoelectric points, molecular weights and subcellular localizations were identified. Stringent statistical analysis identified 51 proteins upregulated in response to glucose limitation and 51 upregulated in response to ammonia limitation. Under glucose limitation, typical glucose-repressed genes encoding proteins involved in alternative carbon source utilization, fatty acids Ī²-oxidation and oxidative phosphorylation displayed an increased protein level. Proteins upregulated in response to nitrogen limitation were mostly involved in scavenging of alternative nitrogen sources and protein degradation. Comparison of transcript and protein levels clearly showed that upregulation in response to glucose limitation was mainly transcriptionally controlled, whereas upregulation in response to nitrogen limitation was essentially controlled at the post-transcriptional level by increased translational efficiency and/or decreased protein degradation. These observations underline the need for multilevel analysis in yeast systems biology
Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88
The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level of synteny was observed with other aspergilli sequenced. Strong function predictions were made for 6,506 of the 14,165 open reading frames identified. A detailed description of the components of the protein secretion pathway was made and striking differences in the hydrolytic enzyme spectra of aspergilli were observed. A reconstructed metabolic network comprising 1,069 unique reactions illustrates the versatile metabolism of A. niger. Noteworthy is the large number of major facilitator superfamily transporters and fungal zinc binuclear cluster transcription factors, and the presence of putative gene clusters for fumonisin and ochratoxin A synthesis
The production of species-specific highly unsaturated fatty Acyl-containing LCOs from Rhizobium leguminosarum bv. trifolii is stringently regulated by nodD and involves the nodRL Genes
A proportion of the Nod factors of some Rhizobium leguminosarum bv. trifolii strains is characterized by the presence of highly umsaturated fatty acyl chains containing trans double bonds in conjugation with the carbonyl group of the glycan oligosaccharide backbone. These fatty acyl chains are C 18:3, C20:3, C18:4, or C20:4 and have UV-absorption maxima at 303 and 330 nm. These Nod factors are presumed to be important for host-specific nodulation on clover species. However, in wild-type R. leguminosarum bv. trifolii ANU843, Nod factors with these characteristic acyl chains were not observed using standard growth conditions. They were observed only when nod genes were present in multiple copies or when transcription was artificially increased to higher levels by introduction of extra copies of the transcriptional regulator gene nodD. In a screen for the genetic requirements for production of the Nod factors with these characteristic structures, it was found that the region downstream of nodF and nodE is essential for the presence of highly unsaturated fatty acyl moieties. Mu-lacZ insertion in this region produced a mutant that did not produce detectable levels of the highly unsaturated fatty acyl-bearing Nod factors. The Mu-lacZ insertion was translationally fused to a putative new gene, designated nodR, in the nodE-nodL intergenic region; however, no predicted function for the putative NodR protein has been obtained from database homology searches. In a set of 12 wild-type strains of R. leguminosarum bv. trifolii originating from various geographical regions that were analyzed for the presence of a nodR-like gene, it was found that seven strains carry a homologous NodR open reading frame. Taken together, our results suggest a tightly controlled regulation of nod genes, in which we propose that it is the balance of transcriptional levels of nodFE and the nodRL genes that is critical for determining the presence of highly unsaturated fatty acyl moieties in the Nod factors produced by R. leguminosarum bv. trifolii
Targeting proline in (phospho)proteomics
Mass spectrometry-based proteomics experiments typically start with the digestion of proteins using trypsin, chosen because of its high specificity, availability, and ease of use. It has become apparent that the sole use of trypsin may impose certain limits on our ability to grasp the full proteome, missing out particular sites of post-translational modifications, protein segments, or even subsets of proteins. To tackle this problem, alternative proteases have been introduced and shown to lead to an increase in the detectable (phospho)proteome. Here, we argue that there may be further room for improvement and explore the protease EndoPro. For optimal peptide identification rates, we explored multiple peptide fragmentation techniques (HCD, ETD, and EThcD) and employed Byonic as search algorithm. We obtain peptide IDs for about 40% of the MS2 spectra (66% for trypsin). EndoPro cleaves with high specificity at the C-terminal site of Pro and Ala residues and displays activity in a broad pH range, where we focused on its performance at pH = 2 and 5.5. The proteome coverage of EndoPro at these two pH values is rather distinct, and also complementary to the coverage obtained with trypsin. As about 40% of mammalian protein phosphorylations are proline-directed, we also explored the performance of EndoPro in phosphoproteomics. EndoPro extends the coverable phosphoproteome substantially, whereby both the, at pH = 2 and 5.5, acquired phosphoproteomes are complementary to each other and to the phosphoproteome obtained using trypsin. Hence, EndoPro is a powerful tool to exploit in (phospho)proteomics applications
Targeting proline in (phospho)proteomics
Mass spectrometry-based proteomics experiments typically start with the digestion of proteins using trypsin, chosen because of its high specificity, availability, and ease of use. It has become apparent that the sole use of trypsin may impose certain limits on our ability to grasp the full proteome, missing out particular sites of post-translational modifications, protein segments, or even subsets of proteins. To tackle this problem, alternative proteases have been introduced and shown to lead to an increase in the detectable (phospho)proteome. Here, we argue that there may be further room for improvement and explore the protease EndoPro. For optimal peptide identification rates, we explored multiple peptide fragmentation techniques (HCD, ETD, and EThcD) and employed Byonic as search algorithm. We obtain peptide IDs for about 40% of the MS2 spectra (66% for trypsin). EndoPro cleaves with high specificity at the C-terminal site of Pro and Ala residues and displays activity in a broad pH range, where we focused on its performance at pH = 2 and 5.5. The proteome coverage of EndoPro at these two pH values is rather distinct, and also complementary to the coverage obtained with trypsin. As about 40% of mammalian protein phosphorylations are proline-directed, we also explored the performance of EndoPro in phosphoproteomics. EndoPro extends the coverable phosphoproteome substantially, whereby both the, at pH = 2 and 5.5, acquired phosphoproteomes are complementary to each other and to the phosphoproteome obtained using trypsin. Hence, EndoPro is a powerful tool to exploit in (phospho)proteomics applications
Native Liquid Chromatography and Mass Spectrometry to Structurally and Functionally Characterize Endo-Xylanase Proteoforms
Xylanases are of great value in various industries, including paper, food, and biorefinery. Due to their biotechnological production, these enzymes can contain a variety of post-translational modifications, which may have a profound effect on protein function. Understanding the structure–function relationship can guide the development of products with optimal performance. We have developed a workflow for the structural and functional characterization of an endo-1,4-β-xylanase (ENDO-I) produced by Aspergillus niger with and without applying thermal stress. This workflow relies on orthogonal native separation techniques to resolve proteoforms. Mass spectrometry and activity assays of separated proteoforms permitted the establishment of structure–function relationships. The separation conditions were focus on balancing efficient separation and protein functionality. We employed size exclusion chromatography (SEC) to separate ENDO-I from other co-expressed proteins. Charge variants were investigated with ion exchange chromatography (IEX) and revealed the presence of low abundant glycated variants in the temperature-stressed material. To obtain better insights into the effect on glycation on function, we enriched for these species using boronate affinity chromatography (BAC). The activity measurements showed lower activity of glycated species compared to the non-modified enzyme. Altogether, this workflow allowed in-depth structural and functional characterization of ENDO-I proteoforms
Is Proteomics a Reliable Tool to Probe the Oxidative Folding of Bacterial Membrane Proteins?
<p>The oxidative folding of proteins involves disulfide bond formation, which is usually catalyzed by thiol-disulfide oxidoreductases (TDORs). In bacteria, this process takes place in the cytoplasmic membrane and other extracytoplasmic compartments. While it is relatively easy to study oxidative folding of water-soluble proteins on a proteome-wide scale, this has remained a major challenge for membrane proteins due to their high hydrophobicity. Here, we have assessed whether proteomic techniques can be applied to probe the oxidative folding of membrane proteins using the Gram-positive bacterium Bacillus subtilis as a model organism. Specifically, we investigated the membrane proteome of a B. subtilis bdbCD mutant strain, which lacks the primary TDOR pair BdbC and BdbD, by gel-free mass spectrometry. In total, 18 membrane-associated proteins showed differing behavior in the bdbCD mutant and the parental strain. These included the ProA protein involved in osmoprotection. Consistent with the absence of ProA, the bdbCD mutant was found to be sensitive to osmotic shock. We hypothesize that membrane proteomics is a potentially effective approach to profile oxidative folding of bacterial membrane proteins. Antioxid. Redox Signal. 18, 1159-1164.</p>
Native Structural and Functional Proteoform Characterization of the Prolyl-Alanyl-Specific Endoprotease EndoPro from Aspergillus niger
The prolyl-alanyl-specific endoprotease (EndoPro) is an industrial enzyme produced in Aspergillus niger. EndoPro is mainly used for food applications but also as a protease in proteomics. In-depth characterization of this enzyme is essential to understand its structural features and functionality. However, there is a lack of analytical methods capable of maintaining both the structural and functional integrity of separated proteoforms. In this study, we developed an anion exchange (AEX) method coupled to native mass spectrometry (MS) for profiling EndoPro proteoforms. Moreover, we investigated purified EndoPro proteoforms with complementary MS-based approaches, including released N-glycan and glycopeptide analysis, to obtain a comprehensive overview of the structural heterogeneity. We showed that EndoPro has at least three sequence variants and seven N-glycosylation sites occupied by high-mannose glycans that can be phosphorylated. Each glycosylation site showed high microheterogeneity with ā¼20 glycans per site. The functional characterization of fractionated proteoforms revealed that EndoPro proteoforms remained active after AEX-separation and the specificity of these proteoforms did not depend on N-glycan phosphorylation. Nevertheless, our data confirmed a strong pH dependence of EndoPro cleavage activity. Altogether, our study demonstrates that AEX-MS is an excellent tool to characterize complex industrial enzymes under native conditions