1,105 research outputs found
First administration to man of Org 25435, an intravenous anaesthetic: A Phase 1 Clinical Trial
BACKGROUND: Org 25435 is a new water-soluble alpha-amino acid ester intravenous anaesthetic which proved satisfactory in animal studies. This study aimed to assess the safety, tolerability and efficacy of Org 25435 and to obtain preliminary pharmacodynamic and pharmacokinetic data. METHODS: In the Short Infusion study 8 healthy male volunteers received a 1 minute infusion of 0.25, 0.5, 1.0, or 2.0 mg/kg (n = 2 per group); a further 10 received 3.0 mg/kg (n = 5) or 4.0 mg/kg (n = 5). Following preliminary pharmacokinetic modelling 7 subjects received a titrated 30 minute Target Controlled Infusion (TCI), total dose 5.8-20 mg/kg. RESULTS: Within the Short Infusion study, all subjects were successfully anaesthetised at 3 and 4 mg/kg. Within the TCI study 5 subjects were anaesthetised and 2 showed signs of sedation. Org 25435 caused hypotension and tachycardia at doses over 2 mg/kg. Recovery from anaesthesia after a 30 min administration of Org 25435 was slow (13.7 min). Pharmacokinetic modelling suggests that the context sensitive half-time of Org 25435 is slightly shorter than that of propofol in infusions up to 20 minutes but progressively longer thereafter. CONCLUSIONS: Org 25435 is an effective intravenous anaesthetic in man at doses of 3 and 4 mg/kg given over 1 minute. Longer infusions can maintain anaesthesia but recovery is slow. Hypotension and tachycardia during anaesthesia and slow recovery of consciousness after cessation of drug administration suggest this compound has no advantages over currently available intravenous anaesthetics
First radial velocity results from the MINiature Exoplanet Radial Velocity Array (MINERVA)
The MINiature Exoplanet Radial Velocity Array (MINERVA) is a dedicated
observatory of four 0.7m robotic telescopes fiber-fed to a KiwiSpec
spectrograph. The MINERVA mission is to discover super-Earths in the habitable
zones of nearby stars. This can be accomplished with MINERVA's unique
combination of high precision and high cadence over long time periods. In this
work, we detail changes to the MINERVA facility that have occurred since our
previous paper. We then describe MINERVA's robotic control software, the
process by which we perform 1D spectral extraction, and our forward modeling
Doppler pipeline. In the process of improving our forward modeling procedure,
we found that our spectrograph's intrinsic instrumental profile is stable for
at least nine months. Because of that, we characterized our instrumental
profile with a time-independent, cubic spline function based on the profile in
the cross dispersion direction, with which we achieved a radial velocity
precision similar to using a conventional "sum-of-Gaussians" instrumental
profile: 1.8 m s over 1.5 months on the RV standard star HD 122064.
Therefore, we conclude that the instrumental profile need not be perfectly
accurate as long as it is stable. In addition, we observed 51 Peg and our
results are consistent with the literature, confirming our spectrograph and
Doppler pipeline are producing accurate and precise radial velocities.Comment: 22 pages, 9 figures, submitted to PASP, Peer-Reviewed and Accepte
Differential branching fraction and angular analysis of the decay B0→K∗0μ+μ−
The angular distribution and differential branching fraction of the decay B 0→ K ∗0 μ + μ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions
Observation of the decay
The decay is observed for the first
time, using proton-proton collisions collected with the LHCb detector
corresponding to an integrated luminosity of 3fb. A signal yield of
decays is reported with a significance of 6.2 standard deviations.
The ratio of the branching fraction of \B_c \rightarrow J/\psi K^+ K^- \pi^+
decays to that of decays is measured to be
, where the first uncertainty is statistical and the
second is systematic.Comment: 18 pages, 2 figure
Observation of the decay B+c→Bºsπ+
The result of a search for the decay B+c→Bºsπ+ is presented, using the Bºs→Ds-π+ and Bºs→J/ψϕ channels. The analysis is based on a data sample of pp collisions collected with the LHCb detector, corresponding to an integrated luminosity of 1 fb-1 taken at a center-of-mass energy of 7 TeV, and 2 fb-1 taken at 8 TeV. The decay B+c→Bºsπ+ is observed with significance in excess of 5 standard deviations independently in both decay channels. The measured product of the ratio of cross sections and branching fraction is [σ(Bc+)/σ(Bºs)]×B(Bc+→Bºsπ+)=[2.37±0.31 (stat)±0.11 (syst)-0.13+0.17(τBc+)]×10-3, in the pseudorapidity range 2<η(B)<5, where the first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty on the Bc+ lifetime. This is the first observation of a B meson decaying to another B meson via the weak interaction
Study of B0(s)→K0Sh+h′− decays with first observation of B0s→K0SK±π∓ and B0s→K0Sπ+π−
A search for charmless three-body decays of B 0 and B0s mesons with a K0S meson in the final state is performed using the pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, collected at a centre-of-mass energy of 7 TeV recorded by the LHCb experiment. Branching fractions of the B0(s)→K0Sh+h′− decay modes (h (′) = π, K), relative to the well measured B0→K0Sπ+π− decay, are obtained. First observation of the decay modes B0s→K0SK±π∓ and B0s→K0Sπ+π− and confirmation of the decay B0→K0SK±π∓ are reported. The following relative branching fraction measurements or limits are obtained B(B0→K0SK±π∓)B(B0→K0Sπ+π−)=0.128±0.017(stat.)±0.009(syst.), B(B0→K0SK+K−)B(B0→K0Sπ+π−)=0.385±0.031(stat.)±0.023(syst.), B(B0s→K0Sπ+π−)B(B0→K0Sπ+π−)=0.29±0.06(stat.)±0.03(syst.)±0.02(fs/fd), B(B0s→K0SK±π∓)B(B0→K0Sπ+π−)=1.48±0.12(stat.)±0.08(syst.)±0.12(fs/fd)B(B0s→K0SK+K−)B(B0→K0Sπ+π−)∈[0.004;0.068]at90%CL
Observations of Bºs→ψ(2S)η and Bº(s)→ψ(2S)π+π- decays
First observations of the B0s
→ψ(2S)η, B0 →ψ(2S)π
+
π
− and B0s
→ψ(2S)π
+
π
− decays are made
using a dataset corresponding to an integrated luminosity of 1.0 fb−1 collected by the LHCb experiment in
proton–proton collisions at a centre-of-mass energy of
√
s = 7 TeV. The ratios of the branching fractions
of each of the ψ(2S) modes with respect to the corresponding J/ψ decays are
B(B0s
→ψ(2S)η)
÷
B(B0s
→J/ψη)
= 0.83± 0.14 (stat)±0.12 (syst) ±0.02 (B),
;
B(B0→ψ(2S)π
+
π
−
)
÷
B(B0→J/ψπ
+
π
−
)
= 0.56± 0.07 (stat)±0.05 (syst)± 0.01 (B),
;
B(B0s
→ψ(2S)π
+
π
−
)
÷
B(B0s
→J/ψπ
+
π
−
)
= 0.34± 0.04 (stat)±0.03 (syst)± 0.01 (B),
where the third uncertainty corresponds to the uncertainties of the dilepton branching fractions of the J/ψ
and ψ(2S) meson decays
Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays
A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity
Measurement of the CKM angle γ from a combination of B±→Dh± analyses
A combination of three LHCb measurements of the CKM angle γ is presented. The decays B±→D K± and
B±→Dπ± are used, where D denotes an admixture of D0 and D0 mesons, decaying into K+K−, π+π−, K±π∓, K±π∓π±π∓, K0Sπ+π−, or K0S K+K− final states. All measurements use a dataset corresponding to 1.0 fb−1 of integrated luminosity. Combining results from B±→D K± decays alone a best-fit value of
γ =72.0◦ is found, and confidence intervals are set
γ ∈ [56.4,86.7]◦ at 68% CL,
γ ∈ [42.6,99.6]◦ at 95% CL.
The best-fit value of γ found from a combination of results from B±→Dπ± decays alone, is γ =18.9◦,
and the confidence intervals
γ ∈ [7.4,99.2]◦ ∪ [167.9,176.4]◦ at 68% CL
are set, without constraint at 95% CL. The combination of results from B± → D K± and B± → Dπ±
decays gives a best-fit value of γ =72.6◦ and the confidence intervals
γ ∈ [55.4,82.3]◦ at 68% CL,
γ ∈ [40.2,92.7]◦ at 95% CL
are set. All values are expressed modulo 180◦, and are obtained taking into account the effect of D0–D0
mixing
Study of DJ meson decays to D+π−, D0π+ and D∗+π− final states in pp collisions
A study of D+π−, D0π+ and D∗+π− final states is performed using pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, collected at a centre-of-mass energy of 7 TeV with the LHCb detector. The D1(2420)0 resonance is observed in the D∗+π− final state and the D∗2(2460) resonance is observed in the D+π−, D0π+ and D∗+π− final states. For both resonances, their properties and spin-parity assignments are obtained. In addition, two natural parity and two unnatural parity resonances are observed in the mass region between 2500 and 2800 MeV. Further structures in the region around 3000 MeV are observed in all the D∗+π−, D+π− and D0π+ final states
- …