5,585 research outputs found
Characterizing PSPACE with Shallow Non-Confluent P Systems
In P systems with active membranes, the question of understanding the
power of non-confluence within a polynomial time bound is still an open problem. It is
known that, for shallow P systems, that is, with only one level of nesting, non-con
uence
allows them to solve conjecturally harder problems than con
uent P systems, thus reaching PSPACE. Here we show that PSPACE is not only a bound, but actually an exact
characterization. Therefore, the power endowed by non-con
uence to shallow P systems
is equal to the power gained by con
uent P systems when non-elementary membrane
division and polynomial depth are allowed, thus suggesting a connection between the
roles of non-confluence and nesting depth
Characterizing PSPACE with Shallow Non-Confluent P Systems
In P systems with active membranes, the question of understanding the
power of non-confluence within a polynomial time bound is still an open problem. It is
known that, for shallow P systems, that is, with only one level of nesting, non-con
uence
allows them to solve conjecturally harder problems than con
uent P systems, thus reaching PSPACE. Here we show that PSPACE is not only a bound, but actually an exact
characterization. Therefore, the power endowed by non-con
uence to shallow P systems
is equal to the power gained by con
uent P systems when non-elementary membrane
division and polynomial depth are allowed, thus suggesting a connection between the
roles of non-confluence and nesting depth
Hygrothermal damage mechanisms in graphite-epoxy composites
T300/5209 and T300/5208 graphite epoxy laminates were studied experimentally and analytically in order to: (1) determine the coupling between applied stress, internal residual stress, and moisture sorption kinetics; (2) examine the microscopic damage mechanisms due to hygrothermal cycling; (3) evaluate the effect of absorbed moisture and hygrothermal cycling on inplane shear response; (4) determine the permanent loss of interfacial bond strength after moisture absorption and drying; and (5) evaluate the three dimensional stress state in laminates under a combination of hygroscopic, thermal, and mechanical loads. Specimens were conditioned to equilibrium moisture content under steady exposure to 55% or 95% RH at 70 C or 93 C. Some specimens were tested subsequent to moisture conditioning and 100 cycles between -54 C and either 70 C or 93 C
First-Principles Wannier Functions of Silicon and Gallium Arsenide
We present a self-consistent, real-space calculation of the Wannier functions
of Si and GaAs within density functional theory. We minimize the total energy
functional with respect to orbitals which behave as Wannier functions under
crystal translations and, at the minimum, are orthogonal. The Wannier functions
are used to calculate the total energy, lattice constant, bulk modulus, and the
frequency of the zone-center TO phonon of the two semiconductors with the
accuracy required nowadays in ab-initio calculations. Furthermore, the centers
of the Wannier functions are used to compute the macroscopic polarization of Si
and GaAs in zero electric field. The effective charges of GaAs, obtained by
finite differentiation of the polarization, agree with the results of linear
response theory.Comment: 12 pages, 2 PostScript figures, RevTeX, to appear in Physical Review
Rates and Equilibria for a Photoisomerizable Antagonist at the Acetylcholine Receptor of Electrophorus Electroplaques
Voltage-jump and light-flash experiments have been performed on isolated Electrophorus electroplaques exposed simultaneously to nicotinic agonists and to the photoisomerizable compound 2,2'-bis-[α-(trimethylammonium)methyl]-azobenzene (2BQ). Dose-response curves are shifted to the right in a nearly parallel fashion by 2BQ, which suggests competitive antagonism; dose-ratio analyses show apparent dissociation constants of 0.3 and 1 µM for the cis and trans isomers, respectively. Flash-induced trans → cis concentration jumps produce the expected decrease in agonist-induced conductance; the time constant is several tens of milliseconds. From the concentration dependence of these rates, we conclude that the association and dissociation rate constants for the cis-2BQ-receptor binding are approximately ~ 10^8 M^(-1) s^(-1) and 60 s^(-1) at 20ºC; the Q_(10) is 3. Flash-induced cis → trans photoisomerizations produce molecular rearrangements of the ligand-receptor complex, but the resulting relaxations probably reflect the kinetics of buffered diffusion rather than of the interaction between trans-2BQ and the receptor. Antagonists seem to bind about an order of magnitude more slowly than agonists at nicotinic receptors
Effect of dimensionality on the charge-density-wave in few-layers 2H-NbSe
We investigate the charge density wave (CDW) instability in single and double
layers, as well as in the bulk 2H-NbSe. We demonstrate that the density
functional theory correctly describes the metallic CDW state in the bulk
2H-NbSe. We predict that both mono- and bilayer NbSe undergo a CDW
instability. However, while in the bulk the instability occurs at a momentum
, in free-standing layers it
occurs at . Furthermore, while
in the bulk the CDW leads to a metallic state, in a monolayer the ground state
becomes semimetallic, in agreement with recent experimental data. We elucidate
the key role that an enhancement of the electron-phonon matrix element at
plays in forming the CDW ground state.Comment: 4 pages 5 figure
Electron-phonon coupling and phonon self-energy in MgB: do we really understand MgB Raman spectra ?
We consider a model Hamiltonian fitted on the ab-initio band structure to
describe the electron-phonon coupling between the electronic bands and
the phonon E mode in MgB. The model allows for analytical
calculations and numerical treatments using very large k-point grids. We
calculate the phonon self-energy of the E mode along two high symmetry
directions in the Brillouin zone. We demonstrate that the contribution of the
bands to the Raman linewidth of the E mode via the
electron-phonon coupling is zero. As a consequence the large resonance seen in
Raman experiments cannot be interpreted as originated from the mode at
. We examine in details the effects of Fermi surface singularities in
the phonon spectrum and linewidth and we determine the magnitude of finite
temperature effects in the the phonon self-energy. From our findings we suggest
several possible effects which might be responsible for the MgB Raman
spectra.Comment: 10 pages, 9 figure
A covalently bound photoisomerizable agonist. Comparison with reversibly bound agonists at electrophorus electroplaques
After disulphide bonds are reduced with dithiothreitol, trans-3-(alpha-bromomethyl)-3’-[alpha-(trimethylammonium)methyl]azobenzene (trans-QBr) alkylates a sulfhydryl group on receptors. The membrane conductance induced by this “tethered agonist” shares many properties with that induced by reversible agonists. Equilibrium conductance increases as the membrane potential is made more negative; the voltage sensitivity resembles that seen with 50 [mu]M carbachol. Voltage- jump relaxations follow an exponential time-course; the rate constants are about twice as large as those seen with 50 mu M carbachol and have the same voltage and temperature sensitivity. With reversible agonists, the rate of channel opening increases with the frequency of agonist-receptor collisions: with tethered trans-Qbr, this rate depends only on intramolecular events. In comparison to the conductance induced by reversible agonists, the QBr-induced conductance is at least 10-fold less sensitive to competitive blockade by tubocurarine and roughly as sensitive to “open-channel blockade” bu QX-222. Light-flash experiments with tethered QBr resemble those with the reversible photoisomerizable agonist, 3,3’,bis-[alpha-(trimethylammonium)methyl]azobenzene (Bis-Q): the conductance is increased by cis {arrow} trans photoisomerizations and decreased by trans {arrow} cis photoisomerizations. As with Bis-Q, ligh-flash relaxations have the same rate constant as voltage-jump relaxations. Receptors with tethered trans isomer. By comparing the agonist-induced conductance with the cis/tans ratio, we conclude that each channel’s activation is determined by the configuration of a single tethered QBr molecule. The QBr-induced conductance shows slow decreases (time constant, several hundred milliseconds), which can be partially reversed by flashes. The similarities suggest that the same rate-limiting step governs the opening and closing of channels for both reversible and tethered agonists. Therefore, this step is probably not the initial encounter between agonist and receptor molecules
Structure and stability of graphene nanoribbons in oxygen, carbon dioxide, water, and ammonia
We determine, by means of density functional theory, the stability and the
structure of graphene nanoribbon (GNR) edges in presence of molecules such as
oxygen, water, ammonia, and carbon dioxide. As in the case of
hydrogen-terminated nanoribbons, we find that the most stable armchair and
zigzag configurations are characterized by a non-metallic/non-magnetic nature,
and are compatible with Clar's sextet rules, well known in organic chemistry.
In particular, we predict that, at thermodynamic equilibrium, neutral GNRs in
oxygen-rich atmosphere should preferentially be along the armchair direction,
while water-saturated GNRs should present zigzag edges. Our results promise to
be particularly useful to GNRs synthesis, since the most recent and advanced
experimental routes are most effective in water and/or ammonia-containing
solutions.Comment: accepted for publication in PR
- …