21 research outputs found

    3′ UTR Deletion of <i>FBXO28</i> in a Patient with Brain Abnormalities and Developmental Delay

    No full text
    Constitutional deletions of chromosome 1q42 region are rare. The phenotype spectrum associated with this copy number change is variable, including developmental delay, intellectual disability, seizures, and dysmorphology. This study describes a patient with developmental delays and brain abnormalities. G-banded karyotype, FISH, SNP oligonucleotide microarray analysis (SOMA), and whole exome sequencing analysis were performed. Postnatal reanalysis of prenatal SOMA and follow-up parental testing revealed a paternally inherited 63 kb deletion at 1q42.11 in the patient. We characterized the clinical features of this patient, providing insight into the clinical phenotype associated with deletions of the 1q42.11 sub-band. Our study provides new evidence supporting the potential functional importance of the FBXO28 3′ UTR region and the hypothesis that FBXO28 is a critical gene in the pathogenesis of chromosome 1q41q42 microdeletion syndrome. It also highlights the different goals and reporting criteria between prenatal and postnatal microarray tests

    De Novo Mutations in PPP3CA Cause Severe Neurodevelopmental Disease with Seizures.

    No full text
    Exome sequencing has readily enabled the discovery of the genetic mutations responsible for a wide range of diseases. This success has been particularly remarkable in the severe epilepsies and other neurodevelopmental diseases for which rare, often de novo, mutations play a significant role in disease risk. Despite significant progress, the high genetic heterogeneity of these disorders often requires large sample sizes to identify a critical mass of individuals with disease-causing mutations in a single gene. By pooling genetic findings across multiple studies, we have identified six individuals with severe developmental delay (6/6), refractory seizures (5/6), and similar dysmorphic features (3/6), each harboring a de novo mutation in PPP3CA. PPP3CA encodes the alpha isoform of a subunit of calcineurin. Calcineurin encodes a calcium- and calmodulin-dependent serine/threonine protein phosphatase that plays a role in a wide range of biological processes, including being a key regulator of synaptic vesicle recycling at nerve terminals. Five individuals with de novo PPP3CA mutations were identified among 4,760 trio probands with neurodevelopmental diseases; this is highly unlikely to occur by chance (p = 1.2&nbsp;× 10-8) given the size and mutability of the gene. Additionally, a sixth individual with a de novo mutation in PPP3CA was connected to this study through GeneMatcher. Based on these findings, we securely implicate PPP3CA in early-onset refractory epilepsy and further support the emerging role for synaptic dysregulation in epilepsy

    CSNK2B

    No full text
    CSNK2B has recently been implicated as a disease gene for neurodevelopmental disability (NDD) and epilepsy. Information about developmental outcomes has been limited by the young age and short follow up for many of the previously reported cases, and further delineation of the spectrum of associated phenotypes is needed. We present 25 new patients with variants in CSNK2B and refine the associated NDD and epilepsy phenotypes. CSNK2B variants were identified by research or clinical exome sequencing, and investigators from different centers were connected via GeneMatcher. Most individuals had developmental delay and generalized epilepsy with onset in the first two years. However, we found a broad spectrum of phenotypic severity, ranging from early normal development with pharmacoresponsive seizures to profound intellectual disability with intractable epilepsy and recurrent refractory status epilepticus. These findings suggest that CSNK2B should be considered in the diagnostic evaluation of patients with a broad range of NDD with treatable or intractable seizures

    CSNK2B: A broad spectrum of neurodevelopmental disability and epilepsy severity

    No full text
    CSNK2B has recently been implicated as a disease gene for neurodevelopmental disability (NDD) and epilepsy. Information about developmental outcomes has been limited by the young age and short follow-up for many of the previously reported cases, and further delineation of the spectrum of associated phenotypes is needed. We present 25 new patients with variants in CSNK2B and refine the associated NDD and epilepsy phenotypes. CSNK2B variants were identified by research or clinical exome sequencing, and investigators from different centers were connected via GeneMatcher. Most individuals had developmental delay and generalized epilepsy with onset in the first 2 years. However, we found a broad spectrum of phenotypic severity, ranging from early normal development with pharmacoresponsive seizures to profound intellectual disability with intractable epilepsy and recurrent refractory status epilepticus. These findings suggest that CSNK2B should be considered in the diagnostic evaluation of patients with a broad range of NDD with treatable or intractable seizures

    Abrogation of MAP4K4 protein function causes congenital anomalies in humans and zebrafish

    No full text
    International audienceWe report 21 families displaying neurodevelopmental differences and multiple congenital anomalies while bearing a series of rare variants in mitogen-activated protein kinase kinase kinase kinase 4 ( MAP4K4 ). MAP4K4 has been implicated in many signaling pathways including c-Jun N-terminal and RAS kinases and is currently under investigation as a druggable target for multiple disorders. Using several zebrafish models, we demonstrate that these human variants are either loss-of-function or dominant-negative alleles and show that decreasing Map4k4 activity causes developmental defects. Furthermore, MAP4K4 can restrain hyperactive RAS signaling in early embryonic stages. Together, our data demonstrate that MAP4K4 negatively regulates RAS signaling in the early embryo and that variants identified in affected humans abrogate its function, establishing MAP4K4 as a causal locus for individuals with syndromic neurodevelopmental differences
    corecore