23 research outputs found

    The aquatic ecotoxicology of the synthetic pyrethroids: from laboratory to landscape

    Get PDF
    Synthetische pyrethroïden (SPs) hebben voor een doorbraak in de bestrijding van insectplagen gezorgd door hun breed-spectrum werkzaamheid bij lage doseringen, terwijl ze een relatief lage toxiciteit hebben voor zoogdieren. Bezorgdheid is gerezen omtrent de hoge toxiciteit van SPs voor aquatische organismen in laboratoriumstudies, met name voor vissen en aquatische geleedpotigen. Als gevolg van haar zeer lipofiele eigenschappen zal een groot deel van het pyrethroïde snel uit de waterfase aan organische stof in het sediment gebonden worden, waardoor de blootstelling voor de organismen in de water-kolom relatief laag zal zijn. Het is eerder aangetoond dat de door sorptie veroorzaakte verlaging van de blootstelling de effecten op aquatische organismen onder veldomstandigheden vermindert

    On the Progenitors of Core-Collapse Supernovae

    Full text link
    Theory holds that a star born with an initial mass between about 8 and 140 times the mass of the Sun will end its life through the catastrophic gravitational collapse of its iron core to a neutron star or black hole. This core collapse process is thought to usually be accompanied by the ejection of the star's envelope as a supernova. This established theory is now being tested observationally, with over three dozen core-collapse supernovae having had the properties of their progenitor stars directly measured through the examination of high-resolution images taken prior to the explosion. Here I review what has been learned from these studies and briefly examine the potential impact on stellar evolution theory, the existence of "failed supernovae", and our understanding of the core-collapse explosion mechanism.Comment: 7 Pages, invited review accepted for publication by Astrophysics and Space Science (special HEDLA 2010 issue

    SN 2012ec: mass of the progenitor from PESSTO follow-up of the photospheric phase

    Get PDF
    We present the results of a photometric and spectroscopic monitoring campaign of SN 2012ec, which exploded in the spiral galaxy NGC 1084, during the photospheric phase. The photometric light curve exhibits a plateau with luminosity L = 0.9 × 1042 erg s−1 and duration ∼90 d, which is somewhat shorter than standard Type II-P supernovae (SNe). We estimate the nickel mass M(56Ni) = 0.040 ± 0.015 M⊙ from the luminosity at the beginning of the radioactive tail of the light curve. The explosion parameters of SN 2012ec were estimated from the comparison of the bolometric light curve and the observed temperature and velocity evolution of the ejecta with predictions from hydrodynamical models. We derived an envelope mass of 12.6 M⊙, an initial progenitor radius of 1.6 × 1013 cm and an explosion energy of 1.2 foe. These estimates agree with an independent study of the progenitor star identified in pre-explosion images, for which an initial mass of M = 14-22 M⊙ was determined. We have applied the same analysis to two other Type II-P SNe (SNe 2012aw and 2012A), and carried out a comparison with the properties of SN 2012ec derived in this paper. We find a reasonable agreement between the masses of the progenitors obtained from pre-explosion images and masses derived from hydrodynamical models. We estimate the distance to SN 2012ec with the standardized candle method (SCM) and compare it with other estimates based on other primary and secondary indicators. SNe 2012A, 2012aw and 2012ec all follow the standard relations for the SCM for the use of Type II-P SNe as distance indicators

    Macroinvertebrate responses to insecticide application between sprayed and adjacent non-sprayed ditch sections of different sizes

    No full text
    Under typical agricultural use of an insecticide, it is likely that only part of an edge-of-field drainage ditch will be directly contaminated by spray drift. The response, including recovery, of aquatic macroinvertebrates in sprayed ditch sections may be affected by immigration of organisms from adjacent nonsprayed ditch sections, but also the population dynamics in nonsprayed sections (refuges) may be affected by nearby contaminated patches (known as action at a distance). Experimental ditches were used to study the influence of the presence of nearby refuges on the responses of macroinvertebrates in ditch sections directly sprayed with the insecticide lufenuron, and vice versa. The treatment regimes differed in the proportion of the ditch (0, 33, 67, and 100% of surface area) that was sprayed to reach a lufenuron concentration of 3 µg/L in the water column of the sprayed ditch section. In sprayed ditch sections, clear treatment-related effects were observed for adult midges in the emergence traps and for aquatic arthropods (mainly juveniles) in the artificial substrate/sweep net samples. The extent in magnitude and duration of effects in sprayed ditch sections was overall larger when a larger proportion of the ditch was sprayed and/or the distance to the refuge was larger. In nonsprayed ditch sections of partially treated ditches, treatment-related effects were absent or minor for macroinvertebrates that predominantly dwell on or in the sediment compartment, particularly at a larger distance from the sprayed ditch sections. More mobile arthropods that predominantly dwell in the water column showed clear treatment-related effects in the nonsprayed ditch sections as well, but action at a distance was smaller if a smaller proportion of ditch was treated

    Effects of lambda-cyhalothrin in two ditch microcosm systems of different trophic status

    No full text
    The fate and effects of the pyrethroid insecticide lambda-cyhalothrin were compared in mesotrophic (macrophyte-dominated) and eutrophic (phytoplankton-dominated) ditch microcosms (0.5 m3). Lambda-cyhalothrin was applied three times at one-week intervals at concentrations of 10, 25, 50, 100, and 250 ng/L. The rate of dissipation of lambda-cyhalothrin in the water column of the two types of test systems was similar. After 1 d, only 30% of the amount applied remained in the water phase. Initial, direct effects were observed primarily on arthropod taxa. The most sensitive species was the phantom midge (Chaoborus obscuripes). Threshold levels for slight and transient direct toxic effects were similar (10 ng/L) between types of test systems. At treatment levels of 25 ng/L and higher, apparent population and community responses occurred. At treatments of 100 and 250 ng/L, the rate of recovery of the macroinvertebrate community was lower in the macrophyte-dominated systems, primarily because of a prolonged decline of the amphipod Gammarus pulex. This species occurred at high densities only in the macrophyte-dominated enclosures. Indirect effects (e.g., increase of rotifers and microcrustaceans) were more pronounced in the plankton-dominated test systems, particularly at treatment levels of 25 ng/L and higher

    Toxicokinetic variation in 15 freshwater arthropod species exposed to the insecticide chlorpyrifos

    No full text
    Recent advances in modeling the processes of the toxicity of chemicals—toxicokinetics (TK) and toxicodynamics (TD)—are improving environmental risk assessment (ERA) through prediction of effects from time-varying exposure. This has been achieved by linking chemical fate and toxicological effects mechanistically, based on internal concentrations, through the tissue residue approach. However, certain questions remain: for example, how do TK and TD differ among species and how does this relate to differences in species sensitivity? In a series of experiments, we studied the TK of [14C]chlorpyrifos in 15 freshwater arthropod species, two of which were studied in juvenile and adult life stages. Uptake (kin) and elimination (kout) rate constants were fitted using a one-compartment single first-order kinetic model. The application of two complementary parameter estimation methods facilitated the calculation of bioconcentration factors (BCF) with prediction intervals and 95% depuration times (t95) for all tested species. Extremely slow elimination was observed in some species as well as high overall variation in kin, kout, BCF, and t95 across the tested aquatic arthropod species. This variation has implications for the development of TKTD approaches in ERA, including assessing fluctuating exposure concentrations and the interpretation of observed toxicity responses in the laboratory and in the field

    Ecological effects of Spring and late Summer applications of Lambda-Cyhalothrin on freshwater microcosms

    No full text
    The aim of the study was to compare the effects of the pyrethroid insecticide lambda-cyhalothrin (treated at 10, 25, 50, 100, 250 ng active ingredient a.i./L) on a drainage ditch ecosystem in spring and late summer. Microcosms (water volume approximately 430 L) were established using enclosures in a 50-cm¿deep experimental ditch system containing communities typical of macrophyte-dominated freshwater ecosystems. Effects on macroinvertebrates, zooplankton, phytoplankton, macrophytes, and community metabolism were assessed and evaluated using univariate and multivariate statistical techniques. The macroinvertebrate community responded most clearly to treatment and, as anticipated, insects and crustaceans were among the most sensitive organisms. Statistical analysis showed that the underlying community structure was significantly different between the spring and summer experiments. However, the most sensitive species (Chaoborus obscuripes and Gammarus pulex) were abundant in spring as well as in late summer. In spring and late summer, only slight and transient effects were observed at the community level in the 10-ng/L treatment. Overall, the study did not show substantial differences in the responses of sensitive taxa between spring and late summer treatments, and effects thresholds were similar irrespective of season of treatment

    Ecological effects of Spring and late Summer applications of Lambda-Cyhalothrin on freshwater microcosms

    No full text
    The aim of the study was to compare the effects of the pyrethroid insecticide lambda-cyhalothrin (treated at 10, 25, 50, 100, 250 ng active ingredient a.i./L) on a drainage ditch ecosystem in spring and late summer. Microcosms (water volume approximately 430 L) were established using enclosures in a 50-cm¿deep experimental ditch system containing communities typical of macrophyte-dominated freshwater ecosystems. Effects on macroinvertebrates, zooplankton, phytoplankton, macrophytes, and community metabolism were assessed and evaluated using univariate and multivariate statistical techniques. The macroinvertebrate community responded most clearly to treatment and, as anticipated, insects and crustaceans were among the most sensitive organisms. Statistical analysis showed that the underlying community structure was significantly different between the spring and summer experiments. However, the most sensitive species (Chaoborus obscuripes and Gammarus pulex) were abundant in spring as well as in late summer. In spring and late summer, only slight and transient effects were observed at the community level in the 10-ng/L treatment. Overall, the study did not show substantial differences in the responses of sensitive taxa between spring and late summer treatments, and effects thresholds were similar irrespective of season of treatment

    Aquatic risk assessment of pesticides in Latin America

    No full text
    Latin America is anticipated to be a major growth market for agriculture and production is increasing with use of technologies such as pesticides. Reports of contamination of aquatic ecosystems by pesticides in Latin America have raised concerns about potential for adverse ecological effects. In the registration process of pesticides, all countries require significant data packages on aquatic toxicology and environmental fate. However there are usually no specific requirements to conduct an aquatic risk assessment. To address this issue, the Society of Environmental Toxicology and Chemistry organised a workshop that brought together scientists from academia, government, and industry to review and elaborate on aquatic risk assessment frameworks that can be implemented into regulation of pesticides in Latin America. The workshop concluded that the international framework for risk assessments (protection goals, effects, and exposure assessments, risk characterization and risk mitigation) is broadly applicable in Latin America, but needs further refinement for the use in the region. Some of the challenges associated with these refinements are discussed in the paper. It was recognized that there is potential for data sharing both within and outside of the region where conditions are similar. However there is a need for research to compare local species and environmental conditions to those in other jurisdictions to be able to evaluate the applicability of data used in other countries. Development should also focus on human resources as there is a need to build local capacity and capability, and scientific collaboration and exchange between stakeholders in industry, government, and academia is also important. The meeting also emphasised that, although establishing a regionally relevant risk assessment framework is important, this also needs to be accompanied by enforcement of developed regulations and good management practices to help protect aquatic habitats. Education, training, and communication efforts are needed to achieve this
    corecore