14 research outputs found
A study of administrative practices in correspondence study departments of teachers' colleges and normal schools
Thesis (M.A.Ed.)--University of Kansas, Education, 1929
Analysis of Alzheimer's disease severity across brain regions by topological analysis of gene co-expression networks
<p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder involving variations in the transcriptome of many genes. AD does not affect all brain regions simultaneously. Identifying the differences among the affected regions may shed more light onto the disease progression. We developed a novel method involving the differential topology of gene coexpression networks to understand the association among affected regions and disease severity.</p> <p>Methods</p> <p>We analysed microarray data of four regions - entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC) and middle temporal gyrus (MTG) from AD affected and normal subjects. A coexpression network was built for each region and the topological overlap between them was examined. Genes with zero topological overlap between two region-specific networks were used to characterise the differences between the two regions.</p> <p>Results and conclusion</p> <p>Results indicate that MTG shows early AD pathology compared to the other regions. We postulate that if the MTG gets affected later in the disease, post-mortem analyses of individuals with end-stage AD will show signs of early AD in the MTG, while the EC, HIP and PCC will have severe pathology. Such knowledge is useful for data collection in clinical studies where sample selection is a limiting factor as well as highlighting the underlying biology of disease progression.</p
Competition of Escherichia coli DNA Polymerases I, II and III with DNA Pol IV in Stressed Cells
Escherichia coli has five DNA polymerases, one of which, the low-fidelity Pol IV or DinB, is required for stress-induced mutagenesis in the well-studied Lac frameshift-reversion assay. Although normally present at ∼200 molecules per cell, Pol IV is recruited to acts of DNA double-strand-break repair, and causes mutagenesis, only when at least two cellular stress responses are activated: the SOS DNA-damage response, which upregulates DinB ∼10-fold, and the RpoS-controlled general-stress response, which upregulates Pol IV about 2-fold. DNA Pol III was also implicated but its role in mutagenesis was unclear. We sought in vivo evidence on the presence and interactions of multiple DNA polymerases during stress-induced mutagenesis. Using multiply mutant strains, we provide evidence of competition of DNA Pols I, II and III with Pol IV, implying that they are all present at sites of stress-induced mutagenesis. Previous data indicate that Pol V is also present. We show that the interactions of Pols I, II and III with Pol IV result neither from, first, induction of the SOS response when particular DNA polymerases are removed, nor second, from proofreading of DNA Pol IV errors by the editing functions of Pol I or Pol III. Third, we provide evidence that Pol III itself does not assist with but rather inhibits Pol IV-dependent mutagenesis. The data support the remaining hypothesis that during the acts of DNA double-strand-break (DSB) repair, shown previously to underlie stress-induced mutagenesis in the Lac system, there is competition of DNA polymerases I, II and III with DNA Pol IV for action at the primer terminus. Up-regulation of Pol IV, and possibly other stress-response-controlled factor(s), tilt the competition in favor of error-prone Pol IV at the expense of more accurate polymerases, thus producing stress-induced mutations. This mutagenesis assay reveals the DNA polymerases operating in DSB repair during stress and also provides a sensitive indicator for DNA polymerase competition and choice in vivo
Evidence for century-timescale acceleration in mean sea levels and for recent changes in extreme sea levels
Two of the most important topics in Sea Level Science are addressed in this paper. One is concerned with the evidence for the apparent acceleration in the rate of global sea level change between the 19th and 20th centuries and, thereby, with the question of whether the 20th century sea
level rise was a consequence of an accelerated climate change of anthropogenic origin. An acceleration is indeed observed in both tide gauge and saltmarsh data at different locations around the world, yielding quadratic coefficients ‘c’ of order 0.005 mm/year2 , and with the most rapid changes of rate of sea level rise occurring around the end of the 19th century. The second topic
refers to whether there is evidence that extreme sea levels have increased in recent decades at rates significantly different from those in mean levels. Recent results, which suggest that at most locations rates of change of extreme and mean sea levels are comparable, are presented. In
addition, a short review is given of recent work on extreme sea levels by other authors. This body of work, which is focused primarily on Europe and the Mediterranean, also tends to support mean and extreme sea levels changing at similar rates at most location