23 research outputs found

    No light shining through a wall : new results from a photoregeneration experiment

    Full text link
    Recently, axion-like particle search has received renewed interest. In particular, several groups have started ``light shining through a wall'' experiments based on magnetic field and laser both continuous, which is very demanding in terms of detector background. We present here the 2σ\sigma limits obtained so far with our novel set-up consisting of a pulsed magnetic field and a pulsed laser. In particular, we have found that the axion-like particle two photons inverse coupling constant MM is >8×105> 8\times 10^5 GeV provided that the particle mass ma∌m_\mathrm{a} \sim 1 meV. Our results definitively invalidate the axion interpretation of the original PVLAS optical measurements with a confidence level greater than 99.9%.Comment: Version that will appear in Physical Review Letters, Vol. 99, n. 18, (2 Nov 2007

    The BMV project: Search for photon oscillations into massive particles

    Full text link
    In this contribution to PSAS08 we report on the research activities developed in our Toulouse group, in the framework of the BMV project, concerning the search for photon oscillations into massive particles, such as axion-like particles in the presence of a strong transverse magnetic field. We recall our main result obtained in collaboration with LULI at \'Ecole Polytechnique (Palaiseau, France). We also present the very preliminary results obtained with the BMV experiment which is set up at LNCMP (Toulouse, France).Comment: Proceedings of PSAS'08, to be published in Can. J. Phy

    Giant Anisotropy of Spin-Orbit Splitting at the Bismuth Surface

    Full text link
    We investigate the bismuth (111) surface by means of time and angle resolved photoelectron spectroscopy. The parallel detection of the surface states below and above the Fermi level reveals a giant anisotropy of the Spin-Orbit (SO) spitting. These strong deviations from the Rashba-like coupling cannot be treated in k⋅p\textbf{k}\cdot \textbf{p} perturbation theory. Instead, first principle calculations could accurately reproduce the experimental dispersion of the electronic states. Our analysis shows that the giant anisotropy of the SO splitting is due to a large out-of plane buckling of the spin and orbital texture.Comment: 5 pages, 4 figure

    Circular dichroism and superdiffusive transport at the surface of BiTeI

    Get PDF
    et al.We investigate the electronic states of BiTeI after the optical pumping with circularly polarized photons. Our data show that photoexcited electrons reach an internal thermalization within 300 fs of the arrival of the pump pulse. Instead, the dichroic contrast generated by the circularly polarized light relaxes on a time scale shorter than 80 fs. This result implies that orbital and spin polarization created by the circular pump pulse rapidly decays via manybody interaction. The persistent dichroism at longer delay times is due to the helicity dependence of superdiffussive transport. We ascribe it to the lack of inversion symmetry in an electronic system far from equilibrium conditions.We acknowledge that the FemtoARPES project was financially supported by the RTRA Triangle de la Physique, and the ANR program Chaires d’Excellence (Nr. ANR-08-CEXCEC8-011-01).Peer Reviewe

    Ultrafast filling of an electronic pseudogap in an incommensurate crystal

    Full text link
    We investigate the quasiperiodic crystal (LaS)1.196(VS2) by angle and time resolved photoemission spectroscopy. The dispersion of electronic states is in qualitative agreement with band structure calculated for the VS2 slab without the incommensurate distortion. Nonetheless, the spectra display a temperature dependent pseudogap instead of quasiparticles crossing. The sudden photoexcitation at 50 K induces a partial filling of the electronic pseudogap within less than 80 fs. The electronic energy flows into the lattice modes on a comparable timescale. We attribute this surprisingly short timescale to a very strong electron-phonon coupling to the incommensurate distortion. This result sheds light on the electronic localization arising in aperiodic structures and quasicrystals

    Tuning a Schottky barrier in a photoexcited topological insulator with transient Dirac cone electron-hole asymmetry

    Full text link
    The advent of Dirac materials has made it possible to realize two dimensional gases of relativistic fermions with unprecedented transport properties in condensed matter. Their photoconductive control with ultrafast light pulses is opening new perspectives for the transmission of current and information. Here we show that the interplay of surface and bulk transient carrier dynamics in a photoexcited topological insulator can control an essential parameter for photoconductivity - the balance between excess electrons and holes in the Dirac cone. This can result in a strongly out of equilibrium gas of hot relativistic fermions, characterized by a surprisingly long lifetime of more than 50 ps, and a simultaneous transient shift of chemical potential by as much as 100 meV. The unique properties of this transient Dirac cone make it possible to tune with ultrafast light pulses a relativistic nanoscale Schottky barrier, in a way that is impossible with conventional optoelectronic materials.Comment: Nature Communications, in press (12 pages, 6 figures

    Ultrafast surface carrier dynamics in the topological insulator Bi2Te3

    Full text link
    We discuss the ultrafast evolution of the surface electronic structure of the topological insulator Bi2_2Te3_3 following a femtosecond laser excitation. Using time and angle resolved photoelectron spectroscopy, we provide a direct real-time visualisation of the transient carrier population of both the surface states and the bulk conduction band. We find that the thermalization of the surface states is initially determined by interband scattering from the bulk conduction band, lasting for about 0.5 ps; subsequently, few ps are necessary for the Dirac cone non-equilibrium electrons to recover a Fermi-Dirac distribution, while their relaxation extends over more than 10 ps. The surface sensitivity of our measurements makes it possible to estimate the range of the bulk-surface interband scattering channel, indicating that the process is effective over a distance of 5 nm or less. This establishes a correlation between the nanoscale thickness of the bulk charge reservoir and the evolution of the ultrafast carrier dynamics in the surface Dirac cone
    corecore