30 research outputs found
Spermatozoa lacking Fertilization Influencing Membrane Protein (FIMP) fail to fuse with oocytes in mice
Fujihara, Y., Lu, Y., Noda, T., Oji, A., Larasati, T., Kojima-Kita, K., . . . Ikawa, M. (2020). Spermatozoa lacking fertilization influencing membrane protein (FIMP) fail to fuse with oocytes in mice. Proceedings of the National Academy of Sciences of the United States of America, 117(17), 9393-9400. doi:10.1073/pnas.191706011
Cfap97d1 is important for flagellar axoneme maintenance and male mouse fertility
Abstract
The flagellum is essential for sperm motility and fertilization in vivo. The axoneme is the main component of the flagella, extending through its entire length. An axoneme is comprised of two central microtubules surrounded by nine doublets, the nexin-dynein regulatory complex, radial spokes, and dynein arms. Failure to properly assemble components of the axoneme in a sperm flagellum, leads to fertility alterations. To understand this process in detail, we have defined the function of an uncharacterized gene, Cfap97 domain containing 1 (Cfap97d1). This gene is evolutionarily conserved in mammals and multiple other species, including Chlamydomonas. We have used two independently generated Cfap97d1 knockout mouse models to study the gene function in vivo. Cfap97d1 is exclusively expressed in testes starting from post-natal day 20 and continuing throughout adulthood. Deletion of the Cfap97d1 gene in both mouse models leads to sperm motility defects (asthenozoospermia) and male subfertility. In vitro fertilization (IVF) of cumulus-intact oocytes with Cfap97d1 deficient sperm yielded few embryos whereas IVF with zona pellucida-free oocytes resulted in embryo numbers comparable to that of the control. Knockout spermatozoa showed abnormal motility characterized by frequent stalling in the anti-hook position. Uniquely, Cfap97d1 loss caused a phenotype associated with axonemal doublet heterogeneity linked with frequent loss of the fourth doublet in the sperm stored in the epididymis. This study demonstrates that Cfap97d1 is required for sperm flagellum ultra-structure maintenance, thereby playing a critical role in sperm function and male fertility in mice
Activation of Neuronal Gene Expression by the JMJD3 Demethylase Is Required for Postnatal and Adult Brain Neurogenesis
The epigenetic mechanisms that enable lifelong neurogenesis from neural stem cells (NSCs) in the adult mammalian brain are poorly understood. Here, we show that JMJD3, a histone H3 lysine 27 (H3K27) demethylase, acts as a critical activator of neurogenesis from adult subventricular zone (SVZ) NSCs. JMJD3 is upregulated in neuroblasts, and Jmjd3 deletion targeted to SVZ NSCs in both developing and adult mice impairs neuronal differentiation. JMJD3 regulates neurogenic gene expression via interaction at not only promoter regions but also neurogenic enhancer elements. JMJD3 localizes at neural enhancers genome-wide in embryonic brain, and in SVZ NSCs, JMJD3 regulates the I12b enhancer of Dlx2. In Jmjd3-deleted SVZ cells, I12b remains enriched with H3K27me3 and Dlx2-dependent neurogenesis fails. These findings support a model in which JMJD3 and the poised state of key transcriptional regulatory elements comprise an epigenetic mechanism that enables the activation of neurogenic gene expression in adult NSCs throughout life
Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice
Abstract
Gene-expression analysis studies from Schultz et al. estimate that more than 2,300 genes in the mouse genome are expressed predominantly in the male germ line. As of their 2003 publication [Schultz N, Hamra FK, Garbers DL (2003) Proc Natl Acad Sci USA 100(21):12201â12206], the functions of the majority of these testis-enriched genes during spermatogenesis and fertilization were largely unknown. Since the study by Schultz et al., functional analysis of hundreds of reproductive-tractâenriched genes have been performed, but there remain many testis-enriched genes for which their relevance to reproduction remain unexplored or unreported. Historically, a gene knockout is the âgold standardâ to determine whether a geneâs function is essential in vivo. Although knockout mice without apparent phenotypes are rarely published, these knockout mouse lines and their phenotypic information need to be shared to prevent redundant experiments. Herein, we used bioinformatic and experimental approaches to uncover mouse testis-enriched genes that are evolutionarily conserved in humans. We then used gene-disruption approaches, including Knockout Mouse Project resources (targeting vectors and mice) and CRISPR/Cas9, to mutate and quickly analyze the fertility of these mutant mice. We discovered that 54 mutant mouse lines were fertile. Thus, despite evolutionary conservation of these genes in vertebrates and in some cases in all eukaryotes, our results indicate that these genes are not individually essential for male mouse fertility. Our phenotypic data are highly relevant in this fiscally tight funding period and postgenomic age when large numbers of genomes are being analyzed for disease association, and will prevent unnecessary expenditures and duplications of effort by others