649 research outputs found

    Trans-Relativistic Supernovae, Circumstellar Gamma-Ray Bursts, and Supernova 1998bw

    Get PDF
    Supernova (SN) 1998bw and gamma-ray burst (GRB) 980425 offer the first direct evidence that supernovae are the progenitors of some GRBs. However, this burst was unusually dim, smooth and soft compared to other bursts with known afterglows. Whether it should be considered a prototype for cosmological GRBs depends largely on whether the supernova explosion and burst were asymmetrical or can be modeled as spherical. We address this question by treating the acceleration of the supernova shock in the outermost layers of the stellar envelope, the transition to relativistic flow, and the subsequent expansion (and further acceleration) of the ejecta into the surrounding medium. We find that GRB 980425 could plausibly have been produced by a collision between the relativistic ejecta from SN 1998bw and the star's pre-supernova wind; the model requires no significant asymmetry. This event therefore belongs to a dim subclass of GRBs and is not a prototype for jet-like cosmological GRBs.Comment: 5 pages, 2 figures, to appear in Gamma 2001, eds. S. Ritz, N. Gehrels, and C. Shrade

    Bipolar molecular outflows driven by hydromagnetic protostellar winds

    Get PDF
    We demonstrate that magnetically-collimated protostellar winds will sweep ambient material into thin, radiative, momentum-conserving shells whose features reproduce those commonly observed in bipolar molecular outflows. We find the typical position-velocity and mass-velocity relations to occur in outflows in a wide variety of ambient density distributions, regardless of the time histories of their driving winds.Comment: 4 pages, 1 figure, submitted to ApJ

    Area Invariance of Apparent Horizons under Arbitrary Boosts

    Full text link
    It is a well known analytic result in general relativity that the 2-dimensional area of the apparent horizon of a black hole remains invariant regardless of the motion of the observer, and in fact is independent of the t=constant t=constant slice, which can be quite arbitrary in general relativity. Nonetheless the explicit computation of horizon area is often substantially more difficult in some frames (complicated by the coordinate form of the metric), than in other frames. Here we give an explicit demonstration for very restricted metric forms of (Schwarzschild and Kerr) vacuum black holes. In the Kerr-Schild coordinate expression for these spacetimes they have an explicit Lorentz-invariant form. We consider {\it boosted} versions with the black hole moving through the coordinate system. Since these are stationary black hole spacetimes, the apparent horizons are two dimensional cross sections of their event horizons, so we compute the areas of apparent horizons in the boosted space with (boosted) t=constant t = constant , and obtain the same result as in the unboosted case. Note that while the invariance of area is generic, we deal only with black holes in the Kerr-Schild form, and consider only one particularly simple change of slicing which amounts to a boost. Even with these restrictions we find that the results illuminate the physics of the horizon as a null surface and provide a useful pedagogical tool. As far as we can determine, this is the first explicit calculation of this type demonstrating the area invariance of horizons. Further, these calculations are directly relevant to transformations that arise in computational representation of moving black holes. We present an application of this result to initial data for boosted black holes.Comment: 19 pages, 3 figures. Added a new section and 2 plots along with a coautho

    Closed Universes With Black Holes But No Event Horizons As a Solution to the Black Hole Information Problem

    Get PDF
    We show it is possible for the information paradox in black hole evaporation to be resolved classically. Using standard junction conditions, we attach the general closed spherically symmetric dust metric to a spacetime satisfying all standard energy conditions but with a single point future c-boundary. The resulting Omega Point spacetime, which has NO event horizons, nevertheless has black hole type trapped surfaces and hence black holes. But since there are no event horizons, information eventually escapes from the black holes. We show that a scalar quintessence field with an appropriate exponential potential near the final singularity would give rise to an Omega Point final singularity.Comment: 27 pages in LaTex2e, no figure

    The Trans-Relativistic Blast Wave Model for SN 1998bw and GRB 980425

    Get PDF
    The spatiotemporal coincidence of supernova (SN) 1998bw and gamma-ray burst (GRB) 980425 and this supernova's unusual optical and radio properties have prompted many theoretical models that produce GRBs from supernovae. We review the salient features of our simple, spherical model in which an energetic supernova explosion shock accelerates a small fraction of the progenitor's stellar envelope to mildly relativistic velocities. This material carries sufficient energy to produce a weak GRB and a bright radio supernova through an external shock against a dense stellar wind.Comment: 3 pages, To appear in Proceedings of the 20th Texas Symposium on Relativistic Astrophysics, eds. J. C. Wheeler & H. Martel, AI

    Radiation from low-momentum zoom-whirl orbits

    Full text link
    We study zoom-whirl behaviour of equal mass, non-spinning black hole binaries in full general relativity. The magnitude of the linear momentum of the initial data is fixed to that of a quasi-circular orbit, and its direction is varied. We find a global maximum in radiated energy for a configuration which completes roughly one orbit. The radiated energy in this case exceeds the value of a quasi-circular binary with the same momentum by 15%. The direction parameter only requires minor tuning for the localization of the maximum. There is non-trivial dependence of the energy radiated on eccentricity (several local maxima and minima). Correlations with orbital dynamics shortly before merger are discussed. While being strongly gauge dependent, these findings are intuitive from a physical point of view and support basic ideas about the efficiency of gravitational radiation from a binary system.Comment: 9 pages, 6 figures, Amaldi8 conference proceedings as publishe

    The near-infrared reflected spectrum of source I in Orion-KL

    Full text link
    Source I in the Orion-KL nebula is believed to be the nearest example of a massive star still in the main accretion phase. It is thus one of the best cases for studying the properties of massive protostars to constrain high-mass star formation theories. Near-infrared radiation from source I escapes through the cavity opened by the OMC1 outflow and is scattered by dust towards our line of sight. The reflected spectrum offers a unique possibility of observing the emission from the innermost regions of the system and probing the nature of source I and its immediate surroundings. We obtained moderately high spectral-resolution (R~9000) observations of the near-infrared diffuse emission in several locations around source I/Orion-KL. We observed a widespread rich absorption line spectrum that we compare with cool stellar photospheres and protostellar accretion disk models. The spectrum is broadly similar to strongly veiled, cool, low-gravity stellar photospheres in the range Teff~3500-4500 K, luminosity class I-III. An exact match explaining all features has not been found, and a plausible explanation is that a range of different temperatures contribute to the observed absorption spectrum. The 1D velocity dispersions implied by the absorption spectra, sigma~30 km/s, can be explained by the emission from a disk around a massive, mstar~10 Msun, protostar that is accreting at a high rate, mdot~3x10^{-3} Msun/yr. Our observations suggest that the near-infrared reflection spectrum observed in the Orion-KL region is produced close to source I and scattered to our line of sight in the OMC1 outflow cavity. The spectrum allows us to exclude source I being a very large, massive protostar rotating at breakup speed. We suggest that the absorption spectrum is produced in a disk surrounding a ~10 Msun protostar, accreting from its disk at a high rate of a few 10^{-3} Msun/yr.Comment: Accepted for publication on A&
    • …
    corecore