138 research outputs found
Recent research on changes in genomic regulation and protein expression in intracerebral haemorrhage
Intracerebral haemorrhage (ICH) is a devastating form of stroke that accounts for roughly 10% of all strokes and the effects on those that survive are often debilitating. To date, no suitable therapy exists. Recent work has examined alterations in gene and protein expression after ICH. The focus of this review is to outline the current knowledge of changes in genetic and protein expression after ICH and how those changes may affect the course of brain injury. Both animal and human data are reviewed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73607/1/j.1747-4949.2007.00160.x.pd
Cervical spondylosis with spinal cord encroachment: should preventive surgery be recommended?
<p>Abstract</p> <p>Background</p> <p>It has been stated that individuals who have spondylotic encroachment on the cervical spinal cord without myelopathy are at increased risk of spinal cord injury if they experience minor trauma. Preventive decompression surgery has been recommended for these individuals. The purpose of this paper is to provide the non-surgical spine specialist with information upon which to base advice to patients. The evidence behind claims of increased risk is investigated as well as the evidence regarding the risk of decompression surgery.</p> <p>Methods</p> <p>A literature search was conducted on the risk of spinal cord injury in individuals with asymptomatic cord encroachment and the risk and benefit of preventive decompression surgery.</p> <p>Results</p> <p>Three studies on the risk of spinal cord injury in this population met the inclusion criteria. All reported increased risk. However, none were prospective cohort studies or case-control studies, so the designs did not allow firm conclusions to be drawn. A number of studies and reviews of the risks and benefits of decompression surgery in patients with cervical myelopathy were found, but no studies were found that addressed surgery in asymptomatic individuals thought to be at risk. The complications of decompression surgery range from transient hoarseness to spinal cord injury, with rates ranging from 0.3% to 60%.</p> <p>Conclusion</p> <p>There is insufficient evidence that individuals with spondylotic spinal cord encroachment are at increased risk of spinal cord injury from minor trauma. Prospective cohort or case-control studies are needed to assess this risk. There is no evidence that prophylactic decompression surgery is helpful in this patient population. Decompression surgery appears to be helpful in patients with cervical myelopathy, but the significant risks may outweigh the unknown benefit in asymptomatic individuals. Thus, broad recommendations for decompression surgery in suspected at-risk individuals cannot be made. Recommendations to individual patients must consider possible unique circumstances.</p
Action Mechanism of Inhibin α-Subunit on the Development of Sertoli Cells and First Wave of Spermatogenesis in Mice
Inhibin is an important marker of Sertoli cell (SC) activity in animals with impaired spermatogenesis. However, the precise relationship between inhibin and SC activity is unknown. To investigate this relationship, we partially silenced both the transcription and translation of the gene for the α-subunit of inhibin, Inha, using recombinant pshRNA vectors developed with RNAi-Ready pSIREN-RetroQ-ZsGreen Vector (Clontech Laboratories, Mountain View, Calif). We found that Inha silencing suppresses the cell-cycle regulators Cyclin D1 and Cyclin E and up-regulates the cell-cycle inhibitor P21 (as detected by Western blot analysis), thereby increasing the number of SCs in the G1 phase of the cell cycle and decreasing the amount in the S-phase of the cell cycle (as detected by flow cytometry). Inha silencing also suppressed Pdgfa, Igf1, and Kitl mRNA levels and up-regulated Tgfbrs, Inhba, Inhbb, Cyp11a1, Dhh, and Tjp1 mRNA levels (as indicated by real-time polymerase chain reaction [PCR] analysis). These findings indicate that Inha has the potential to influence the availability of the ligand inhibin and its antagonist activin in the SC in an autocrine manner and inhibit the progression of SC from G1 to S. It may also participate in the development of the blood–testis barrier, Leydig cells, and spermatogenesis through its effect on Dhh, Tjp1, Kitl, and Pdgfa. Real-time PCR and Western blot analyses of Inha, Inhba, and Inhbb mRNA and Inha levels over time show that Inha plays an important role in the formation of round spermatid during the first wave of spermatogenesis in mice
A Cholinergic-Regulated Circuit Coordinates the Maintenance and Bi-Stable States of a Sensory-Motor Behavior during Caenorhabditis elegans Male Copulation
Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components
Systematic and Evolutionary Insights Derived from mtDNA COI Barcode Diversity in the Decapoda (Crustacea: Malacostraca)
Background: Decapods are the most recognizable of all crustaceans and comprise a dominant group of benthic invertebrates of the continental shelf and slope, including many species of economic importance. Of the 17635 morphologically described Decapoda species, only 5.4% are represented by COI barcode region sequences. It therefore remains a challenge to compile regional databases that identify and analyse the extent and patterns of decapod diversity throughout the world. Methodology/Principal Findings: We contributed 101 decapod species from the North East Atlantic, the Gulf of Cadiz and the Mediterranean Sea, of which 81 species represent novel COI records. Within the newly-generated dataset, 3.6% of the species barcodes conflicted with the assigned morphological taxonomic identification, highlighting both the apparent taxonomic ambiguity among certain groups, and the need for an accelerated and independent taxonomic approach. Using the combined COI barcode projects from the Barcode of Life Database, we provide the most comprehensive COI data set so far examined for the Order (1572 sequences of 528 species, 213 genera, and 67 families). Patterns within families show a general predicted molecular hierarchy, but the scale of divergence at each taxonomic level appears to vary extensively between families. The range values of mean K2P distance observed were: within species 0.285% to 1.375%, within genus 6.376% to 20.924% and within family 11.392% to 25.617%. Nucleotide composition varied greatly across decapods, ranging from 30.8 % to 49.4 % GC content. Conclusions/Significance: Decapod biological diversity was quantified by identifying putative cryptic species allowing a rapid assessment of taxon diversity in groups that have until now received limited morphological and systematic examination. We highlight taxonomic groups or species with unusual nucleotide composition or evolutionary rates. Such data are relevant to strategies for conservation of existing decapod biodiversity, as well as elucidating the mechanisms and constraints shaping the patterns observed.FCT - SFRH/BD/25568/ 2006EC FP6 - GOCE-CT-2005-511234 HERMESFCT - PTDC/MAR/69892/2006 LusomarBo
- …