7 research outputs found

    Large-scale identification of human genes implicated in epidermal barrier function

    Get PDF
    Identification of genes expressed in epidermal granular keratinocytes by ORESTES, including a number that are highly specific for these cells

    Methods for elucidating the mechanism of action of proline-rich and other non-lytic antimicrobial peptides

    No full text
    5noA distinct group of antimicrobial peptides kills bacteria by interfering with internal cellular functions and without concurrent lytic effects on cell membranes. Here we describe some methods to investigate the mechanisms of action of these antimicrobial peptides. They include assays to detect the possible temporal separation between membrane permeabilization and bacterial killing events, to assess the capacity of antimicrobial peptides to cross the bacterial membranes and reside in the cytoplasm, and later to inhibit vital cell functions such as DNA transcription and protein translation.reservedmixedBenincasa, Monica; Runti, Giulia; Mardirossian, Mario; Gennaro, Renato; Scocchi, MarcoBenincasa, Monica; Runti, Giulia; Mardirossian, Mario; Gennaro, Renato; Scocchi, Marc

    The developmental transcriptome of Drosophila melanogaster

    Get PDF
    Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development

    Comparative validation of the D. melanogaster modENCODE transcriptome annotation

    Get PDF
    Accurate gene model annotation of reference genomes is critical for making them useful. The modENCODE project has improved the D. melanogaster genome annotation by using deep and diverse high-throughput data. Since transcriptional activity that has been evolutionarily conserved is likely to have an advantageous function, we have performed large-scale interspecific comparisons to increase confidence in predicted annotations. To support comparative genomics, we filled in divergence gaps in the Drosophila phylogeny by generating draft genomes for eight new species. For comparative transcriptome analysis, we generated mRNA expression profiles on 81 samples from multiple tissues and developmental stages of 15 Drosophila species, and we performed cap analysis of gene expression in D. melanogaster and D. pseudoobscura. We also describe conservation of four distinct core promoter structures composed of combinations of elements at three positions. Overall, each type of genomic feature shows a characteristic divergence rate relative to neutral models, highlighting the value of multispecies alignment in annotating a target genome that should prove useful in the annotation of other high priority genomes, especially human and other mammalian genomes that are rich in noncoding sequences. We report that the vast majority of elements in the annotation are evolutionarily conserved, indicating that the annotation will be an important springboard for functional genetic testing by the Drosophila community
    corecore