472 research outputs found
What Have I Learned?
Peter Caswell had always viewed the families bottling business as his birthright. He was stunned when his father sold the business while he was still in college. After becoming a successful personal injury lawyer with a bright future, he learns of the Brustlin Bottling Company that was for sale. In the case Peter reviews with Alan Dawes, his long time friend, information he has developed on five successful companies in the boutique soft drink bottling business. He is trying to decide his next steps a strategy to employ in the business
Transfer Pricing In Transnational Operations: A Case- And Literature-Based Analysis
This paper represents a combined case- and literature-based analysis of transnational pricing and highlights the difference in the issues and perspectives of the business and academic environments. Following an introduction to the issue (noting the growing importance of the transfer of goods from one organizational entity to another within a multinational firm), a short case - The Henderson Company - illustrates how a relatively simple announcement can lead to a lengthy and heated discussion that points out the differences in opinion both between the headquarters and the subsidiaries and between the various regional entities themselves. The analysis of the case reflecting the concerns and perspectives of the members of the international management team (in terms of involvement and partnership, legal and operational concerns, competitive marketing strategy, and evaluation, compensation, and motivational issues) is followed by a literature-based analysis that looks at the complexities of the situation in terms of management, economics, taxation, and finance research. The paper concludes with the recognition that the issue of transnational pricing is a complex one that needs to be addressed from both an organizational perspective and from an international viewpoint emphasizing the development of ways of more accurately reflecting cost allocations
The Magnitude of Rapid Weight Loss and Rapid Weight Gain in Combat Sport Athletes Preparing for Competition: A Systematic Review
Combat sport athletes typically engage in a process called making weight, characterized by rapid weight loss (RWL) and subsequent rapid weight gain (RWG) in the days preceding competition. These practices differ across each sport, but no systematic comparison of the size of the changes in body mass exists. The aim was to determine the magnitude of RWL and RWG in combat sport athletes preparing for competition. The review protocol was preregistered with PROSPERO (CRD42017055279). In eligible studies, athletes prepared habitually with a RWL period ≤7 days preceding competition. An electronic search of EBSCOhost (CINAHL Plus, MEDLINE, and SPORTDiscus) and PubMed Central was performed up to July 2018. Sixteen full-text studies (total 4,432 participants; 156 females and 4,276 males) were included, providing data from five combat sports (boxing, judo, mixed martial arts, taekwondo, and wrestling). Three studies reported RWL and 14 studies reported RWG. Duration permitted for RWG ranged 3–32 hr. The largest changes in body mass occurred in two separate mixed martial arts cohorts (RWL: 7.4 ± 1.1 kg [∼10%] and RWG: 7.4 ± 2.8 kg [11.7% ± 4.7%]). The magnitude of RWG appears to be influenced by the type of sport, competition structure, and recovery duration permitted. A cause for concern is the lack of objective data quantifying the magnitude of RWL. There is insufficient evidence to substantiate the use of RWG as a proxy for RWL, and little data are available in females. By engaging in RWG, athletes are able to exploit the rules to compete up to three weight categories higher than at the official weigh-in
Vortex lattice of a Bose-Einstein Condensate in a rotating anisotropic trap
We study the vortex lattices in a Bose-Einstein Condensate in a rotating
anisotropic harmonic trap. We first investigate the single particle
wavefunctions obtained by the exact solution of the problem and give simple
expressions for these wavefunctions in the small anisotropy limit. Depending on
the strength of the interactions, a few or a large number of vortices can be
formed. In the limit of many vortices, we calculate the density profile of the
cloud and show that the vortex lattice stays triangular. We also find that the
vortex lattice planes align themselves with the weak axis of the external
potential. For a small number of vortices, we numerically solve the
Gross-Pitaevskii equation and find vortex configurations that are very
different from the vortex configurations in an axisymmetric rotating trap.Comment: 15 pages,4 figure
Oscillations of a rapidly rotating annular Bose-Einstein condensate
A time-dependent variational Lagrangian analysis based on the
Gross-Pitaevskii energy functional serves to study the dynamics of a metastable
giant vortex in a rapidly rotating Bose-Einstein condensate. The resulting
oscillation frequencies of the core radius reproduce the trends seen in recent
experiments [Engels et al., Phys. Rev. Lett. 90, 170405 (2003)], but the
theoretical values are smaller by a factor approximately 0.6-0.8.Comment: 7 pages, revtex
A Measurement of Time-Averaged Aerosol Optical Depth using Air-Showers Observed in Stereo by HiRes
Air fluorescence measurements of cosmic ray energy must be corrected for
attenuation of the atmosphere. In this paper we show that the air-showers
themselves can yield a measurement of the aerosol attenuation in terms of
optical depth, time-averaged over extended periods. Although the technique
lacks statistical power to make the critical hourly measurements that only
specialized active instruments can achieve, we note the technique does not
depend on absolute calibration of the detector hardware, and requires no
additional equipment beyond the fluorescence detectors that observe the air
showers. This paper describes the technique, and presents results based on
analysis of 1258 air-showers observed in stereo by the High Resolution Fly's
Eye over a four year span.Comment: 7 pages, 3 figures, accepted for publication by Astroparticle Physics
Journa
Stationary solutions of the one-dimensional nonlinear Schroedinger equation: I. Case of repulsive nonlinearity
All stationary solutions to the one-dimensional nonlinear Schroedinger
equation under box and periodic boundary conditions are presented in analytic
form. We consider the case of repulsive nonlinearity; in a companion paper we
treat the attractive case. Our solutions take the form of stationary trains of
dark or grey density-notch solitons. Real stationary states are in one-to-one
correspondence with those of the linear Schr\"odinger equation. Complex
stationary states are uniquely nonlinear, nodeless, and symmetry-breaking. Our
solutions apply to many physical contexts, including the Bose-Einstein
condensate and optical pulses in fibers.Comment: 11 pages, 7 figures -- revised versio
Coherently Scattering Atoms from an Excited Bose-Einstein Condensate
We consider scattering atoms from a fully Bose-Einstein condensed gas. If we
take these atoms to be identical to those in the Bose-Einstein condensate, this
scattering process is to a large extent analogous to Andreev reflection from
the interface between a superconducting and a normal metal. We determine the
scattering wave function both in the absence and the presence of a vortex. Our
results show a qualitative difference between these two cases that can be
understood as due to an Aharonov-Bohm effect. It leads to the possibility to
experimentally detect and study vortices in this way.Comment: 5 pages of ReVTeX and 2 postscript figure
Vortices and dynamics in trapped Bose-Einstein condensates
I review the basic physics of ultracold dilute trapped atomic gases, with
emphasis on Bose-Einstein condensation and quantized vortices. The hydrodynamic
form of the Gross-Pitaevskii equation (a nonlinear Schr{\"o}dinger equation)
illuminates the role of the density and the quantum-mechanical phase. One
unique feature of these experimental systems is the opportunity to study the
dynamics of vortices in real time, in contrast to typical experiments on
superfluid He. I discuss three specific examples (precession of single
vortices, motion of vortex dipoles, and Tkachenko oscillations of a vortex
array). Other unusual features include the study of quantum turbulence and the
behavior for rapid rotation, when the vortices form dense regular arrays.
Ultimately, the system is predicted to make a quantum phase transition to
various highly correlated many-body states (analogous to bosonic quantum Hall
states) that are not superfluid and do not have condensate wave functions. At
present, this transition remains elusive. Conceivably, laser-induced synthetic
vector potentials can serve to reach this intriguing phase transition.Comment: Accepted for publication in Journal of Low Temperature Physics,
conference proceedings: Symposia on Superfluids under Rotation (Lammi,
Finland, April 2010
From Coherent Modes to Turbulence and Granulation of Trapped Gases
The process of exciting the gas of trapped bosons from an equilibrium initial
state to strongly nonequilibrium states is described as a procedure of symmetry
restoration caused by external perturbations. Initially, the trapped gas is
cooled down to such low temperatures, when practically all atoms are in
Bose-Einstein condensed state, which implies the broken global gauge symmetry.
Excitations are realized either by imposing external alternating fields,
modulating the trapping potential and shaking the cloud of trapped atoms, or it
can be done by varying atomic interactions by means of Feshbach resonance
techniques. Gradually increasing the amount of energy pumped into the system,
which is realized either by strengthening the modulation amplitude or by
increasing the excitation time, produces a series of nonequilibrium states,
with the growing fraction of atoms for which the gauge symmetry is restored. In
this way, the initial equilibrium system, with the broken gauge symmetry and
all atoms condensed, can be excited to the state, where all atoms are in the
normal state, with completely restored gauge symmetry. In this process, the
system, starting from the regular superfluid state, passes through the states
of vortex superfluid, turbulent superfluid, heterophase granular fluid, to the
state of normal chaotic fluid in turbulent regime. Both theoretical and
experimental studies are presented.Comment: Latex file, 25 pages, 4 figure
- …