24 research outputs found
The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry
The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations
Recommended from our members
Heterogeneous Intramolecular Electric Field as a Descriptor of Diels-Alder Reactivity.
External electric fields have proven to be an effective tool in catalysis, on par with pressure and temperature, affecting the thermodynamics and kinetics of a reaction. However, fields in molecules are complicated heterogeneous vector objects, and there is no universal recipe for grasping the exact features of these fields that implicate reactivity. Herein, we demonstrate that topological features of the heterogeneous electric field within the reactant state and of the quantum mechanical electron density-a scalar reporter on the field experienced by the system-can be identified as rigorous descriptors of the reactivity to follow. We scrutinize specifically the Diels-Alder reaction. Its 3D nature and the lack of a singular directionality of charge movement upon barrier crossing make the effect of the electric field not obvious. We show that the electric field topology around the dienophile double bond and the associated changes in the topology of the electron density in this bond are predictors of the reaction barrier. They are also the metrics to rationalize and predict how the external field would inhibit or enhance the reaction. The findings pave the way toward designing external fields for catalysis and reading the reactivity without an explicit mechanistic interrogation, for a variety of reactions
Recommended from our members
Direct Look at the Electric Field in Ketosteroid Isomerase and Its Variants
Recommended from our members
Heterogeneous Intramolecular Electric Field as a Descriptor of Diels-Alder Reactivity.
External electric fields have proven to be an effective tool in catalysis, on par with pressure and temperature, affecting the thermodynamics and kinetics of a reaction. However, fields in molecules are complicated heterogeneous vector objects, and there is no universal recipe for grasping the exact features of these fields that implicate reactivity. Herein, we demonstrate that topological features of the heterogeneous electric field within the reactant state and of the quantum mechanical electron density-a scalar reporter on the field experienced by the system-can be identified as rigorous descriptors of the reactivity to follow. We scrutinize specifically the Diels-Alder reaction. Its 3D nature and the lack of a singular directionality of charge movement upon barrier crossing make the effect of the electric field not obvious. We show that the electric field topology around the dienophile double bond and the associated changes in the topology of the electron density in this bond are predictors of the reaction barrier. They are also the metrics to rationalize and predict how the external field would inhibit or enhance the reaction. The findings pave the way toward designing external fields for catalysis and reading the reactivity without an explicit mechanistic interrogation, for a variety of reactions
Advances in optimizing enzyme electrostatic preorganization.
Utilizing electric fields to catalyze chemical reactions is not a new idea, but in enzymology it undergoes a renaissance, inspired by Warhsel's concept of electrostatic preorganization. According to this concept, the source of the immense catalytic efficiency of enzymes is the intramolecular electric field that permanently favors the reaction transition state over the reactants. Within enzyme design, computational efforts have fallen short in designing enzymes with natural-like efficacy. The outcome could improve if long-range electrostatics (often omitted in current protocols) would be optimized. Here, we highlight the major developments in methods for analyzing and designing electric fields generated by the protein scaffolds, in order to both better understand how natural enzymes function, and aid artificial enzyme design