102 research outputs found

    The role of microRNA-3085 in chondrocyte function

    Get PDF
    MicroRNAs have been shown to play a role in cartilage development, homeostasis and breakdown during osteoarthritis. We previously identified miR-3085 in humans as a chondrocyte-selective microRNA, however it could not be detected by Northern blot. The aim of the current study was to prove that miR-3085 is a microRNA and to investigate the function of miR-3085 in signaling pathways relevant to cartilage homeostasis and osteoarthritis. Here, we confirm that miR-3085 is a microRNA and not another class of small RNA using (1) a pre-miR hairpin maturation assay, (2) expression levels in a Dicer null cell line, and (3) Ago2 pulldown. MicroRNA-3085-3p is expressed more highly in micromass than monolayer cultured chondrocytes. Transfection of miR-3085-3p into chondrocytes decreases expression of COL2A1 and ACAN, both of which are validated as direct targets of miR-3085-3p. Interleukin-1 induces the expression of miR-3085-3p, at least in part via NFκB. In a feed-forward mechanism, miR-3085-3p then potentiates NFκB signaling. However, at early time points after transfection, its action appears to be inhibitory. MyD88 has been shown to be a direct target of miR-3085-3p and may be responsible for the early inhibition of NFκB signaling. However, at later time points, MyD88 knockdown remains inhibitory and so other functions of miR-3085-3p are clearly dominant. TGFβ1 also induces the expression of miR-3085-3p, but in this instance, it exerts a feedback inhibition on signaling with SMAD3 and SMAD4 shown to be direct targets. This in vitro analysis shows that miR-3085-3p functions in chondrocytes to induce IL-1-signaling, reduce TGFβ1 signaling, and inhibit expression of matrix genes. These data suggest that miR-3085-3p has a role in chondrocyte function and could contribute to the process of osteoarthritis

    Regulation of microRNA‐221, ‐222, ‐21 and ‐27 in articular cartilage subjected to abnormal compressive forces

    Get PDF
    Key points microRNAs (miRs) are small non‐coding molecules that regulate post‐transcriptional target gene expression. miRs are involved in regulating cellular activities in response to mechanical loading in all physiological systems, but it is largely unknown whether this response differs with increasing magnitudes of load. miR‐221, miR‐222, miR‐21‐5p, and miR‐27a‐5p were significantly increased in ex vivo cartilage explants subjected to increasing load magnitude and in in vivo joint cartilage exposed to abnormal loading. TIMP3 and CPEB3 are putative miR targets in chondrocytes Identification of mechanically regulated miRs that have potential to impact on tissue homeostasis provides a mechanism by which load‐induced tissue behaviour is regulated, both in health and pathology, in all physiological systems. Abstract Objective microRNAs (miRs) are small non‐coding molecules that regulate post‐transcriptional target gene expression and are involved in mechano‐regulation of cellular activities in all physiological systems. It is unknown whether such epigenetic mechanisms are regulated in response to increasing magnitudes of load. This study investigated mechano‐regulation of miRs in articular cartilage subjected to ‘physiological’ and ‘non‐physiological’ compressive loads in vitro as a model system and validated findings in an in vivo model of abnormal joint loading. Design Bovine full‐depth articular cartilage explants were loaded to 2.5MPa (physiological) or 7MPa (non‐physiological) (1Hz, 15 minutes) and mechanically‐regulated miRs identified using Next Generation Sequencing and verified using quantitative PCR. Downstream targets were verified using miR‐specific mimics or inhibitors in conjunction with 3’‐UTR luciferase activity assays. Results A subset of miRs were mechanically‐regulated in ex vivo cartilage explants and in vivo joint cartilage. miR‐221, miR‐222, miR‐21‐5p, and miR‐27a‐5p were increased and miR‐483 levels decreased with increasing load magnitude. Tissue Inhibitor of Metalloproteinase 3 (TIMP3) and Cytoplasmic Polyadenylation Element Binding Protein 3 (CPEB3) were identified as putative downstream targets. Conclusion Our data confirms miR‐221 and ‐222 mechano‐regulation and demonstrates novel mechano‐regulation of miR‐21‐5p and miR‐27a‐5p in ex vivo and in vivo cartilage loading models. TIMP3 and CPEB3 are putative miR targets in chondrocytes. Identification of specific miRs that are regulated by increasing load magnitude, and their potential to impact on tissue homeostasis, has direct relevance to other mechano‐sensitive physiological systems and provides a mechanism by which load‐induced tissue behaviour is regulated, both in health and pathology

    The microRNA-29 family in cartilage homeostasis and osteoarthritis

    Get PDF
    MicroRNAs have been shown to function in cartilage development and homeostasis, as well as in progression of osteoarthritis. The objective of the current study was to identify microRNAs involved in the onset or early progression of osteoarthritis and characterise their function in chondrocytes. MicroRNA expression in mouse knee joints post-DMM surgery was measured over 7 days. Expression of miR-29b-3p was increased at day 1 and regulated in the opposite direction to its potential targets. In a mouse model of cartilage injury and in end-stage human OA cartilage, the miR-29 family were also regulated. SOX9 repressed expression of miR-29a-3p and miR-29b-3p via the 29a/b1 promoter. TGFβ1 decreased expression of miR-29a, b and c (3p) in primary chondrocytes, whilst IL-1β increased (but LPS decreased) their expression. The miR-29 family negatively regulated Smad, NFκB and canonical WNT signalling pathways. Expression profiles revealed regulation of new WNT-related genes. Amongst these, FZD3, FZD5, DVL3, FRAT2, CK2A2 were validated as direct targets of the miR-29 family. These data identify the miR-29 family as microRNAs acting across development and progression of OA. They are regulated by factors which are important in OA and impact on relevant signalling pathways

    Canadian Guidelines for Controlled Pediatric Donation After Circulatory Determination of Death-Summary Report

    Get PDF
    OBJECTIVES: Create trustworthy, rigorous, national clinical practice guidelines for the practice of pediatric donation after circulatory determination of death in Canada. METHODS: We followed a process of clinical practice guideline development based on World Health Organization and Canadian Medical Association methods. This included application of Grading of Recommendations Assessment, Development, and Evaluation methodology. Questions requiring recommendations were generated based on 1) 2006 Canadian donation after circulatory determination of death guidelines (not pediatric specific), 2) a multidisciplinary symposium of national and international pediatric donation after circulatory determination of death leaders, and 3) a scoping review of the pediatric donation after circulatory determination of death literature. Input from these sources drove drafting of actionable questions and Good Practice Statements, as defined by the Grading of Recommendations Assessment, Development, and Evaluation group. We performed additional literature reviews for all actionable questions. Evidence was assessed for quality using Grading of Recommendations Assessment, Development, and Evaluation and then formulated into evidence profiles that informed recommendations through the evidence-to-decision framework. Recommendations were revised through consensus among members of seven topic-specific working groups and finalized during meetings of working group leads and the planning committee. External review was provided by pediatric, critical care, and critical care nursing professional societies and patient partners. RESULTS: We generated 63 Good Practice Statements and seven Grading of Recommendations Assessment, Development, and Evaluation recommendations covering 1) ethics, consent, and withdrawal of life-sustaining therapy, 2) eligibility, 3) withdrawal of life-sustaining therapy practices, 4) ante and postmortem interventions, 5) death determination, 6) neonatal pediatric donation after circulatory determination of death, 7) cardiac and innovative pediatric donation after circulatory determination of death, and 8) implementation. For brevity, 48 Good Practice Statement and truncated justification are included in this summary report. The remaining recommendations, detailed methodology, full Grading of Recommendations Assessment, Development, and Evaluation tables, and expanded justifications are available in the full text report. CONCLUSIONS: This process showed that rigorous, transparent clinical practice guideline development is possible in the domain of pediatric deceased donation. Application of these recommendations will increase access to pediatric donation after circulatory determination of death across Canada and may serve as a model for future clinical practice guideline development in deceased donation

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Mendelian randomization of blood lipids for coronary heart disease

    Get PDF
    Aims To investigate the causal role of high-density lipoprotein cholesterol (HDL-C) and triglycerides in coronary heart disease (CHD) using multiple instrumental variables for Mendelian randomization. Methods and results We developed weighted allele scores based on single nucleotide polymorphisms (SNPs) with established associations with HDL-C, triglycerides, and low-density lipoprotein cholesterol (LDL-C). For each trait, we constructed two scores. The first was unrestricted, including all independent SNPs associated with the lipid trait identified from a prior meta-analysis (threshold P < 2 × 10−6); and the second a restricted score, filtered to remove any SNPs also associated with either of the other two lipid traits at P ≤ 0.01. Mendelian randomization meta-analyses were conducted in 17 studies including 62,199 participants and 12,099 CHD events. Both the unrestricted and restricted allele scores for LDL-C (42 and 19 SNPs, respectively) associated with CHD. For HDL-C, the unrestricted allele score (48 SNPs) was associated with CHD (OR: 0.53; 95% CI: 0.40, 0.70), per 1 mmol/L higher HDL-C, but neither the restricted allele score (19 SNPs; OR: 0.91; 95% CI: 0.42, 1.98) nor the unrestricted HDL-C allele score adjusted for triglycerides, LDL-C, or statin use (OR: 0.81; 95% CI: 0.44, 1.46) showed a robust association. For triglycerides, the unrestricted allele score (67 SNPs) and the restricted allele score (27 SNPs) were both associated with CHD (OR: 1.62; 95% CI: 1.24, 2.11 and 1.61; 95% CI: 1.00, 2.59, respectively) per 1-log unit increment. However, the unrestricted triglyceride score adjusted for HDL-C, LDL-C, and statin use gave an OR for CHD of 1.01 (95% CI: 0.59, 1.75). Conclusion The genetic findings support a causal effect of triglycerides on CHD risk, but a causal role for HDL-C, though possible, remains less certain.M.V.H. was funded by a UK Medical Research Council Population Health Scientist Fellowship (G0802432). F.W.A. is supported by UCL Hospitals NIHR Biomedical Research Centre. D.I.S. is supported by a Medical Research Council Doctoral Training Award and a grant from the Rosetrees Foundation. ME.K. is supported by the National Institute of Aging and the National Heart, Lung and Blood Institute (HL36310). S.E.H. and P.J.T. are supported by the British Heart Foundation (BHF RG 08/008, PG/07/133/24260), UK Medical Research Council, the US National Institutes of Health (grant NHLBI 33014) and Du Pont Pharma, Wilmington, USA. N.J.S. holds a Chair funded by the British Heart Foundation and is an NIHR Senior Investigator. MI.K. is supported by the National Institute of Aging, the Medical Research Council, the British Heart Foundation, and the National Heart, Lung and Blood Institute and the Academy of Finland. A.D.H. and J.P.C. are supported by the National Institute of Health Research University College London Hospitals Biomedical Research Centre. Funding to pay the Open Access publication charges for this article was provided by RCUK

    Increased serum miR-193a-5p during non-alcoholic fatty liver disease progression: diagnostic and mechanistic relevance

    Get PDF
    Background & Aims: Serum microRNAs (miRNAs) levels are known to change in non-alcoholic fatty liver disease (NAFLD) and may serve as useful biomarkers. This study aimed to profile miRNAs comprehensively at all NAFLD stages.Methods: We profiled 2,083 serum miRNAs in a discovery cohort (183 NAFLD cases representing the complete NAFLD spectrum and 10 population controls). MiRNA libraries generated by HTG EdgeSeq were sequenced by Illumina NextSeq. Selected serum miRNAs were profiled in 372 additional NAFLD cases and 15 population controls by quantitative reverse transcriptase-polymerase chain reaction.Results: Levels of 275 miRNAs differed between cases and population controls. Fewer differences were seen within individual NAFLD stages but miR-193a-5p consistently the showed increased levels in all comparisons. Relative to NAFL/NASH with mild fibrosis (stage 0/1), three miRNAs (miR-193a-5p, miR-378d and miR378d) were increased in cases with NASH and clinically significant fibrosis (stage 2-4), seven (miR193a-5p, miR-378d, miR-378e, miR-320b, c, d & e) increased in cases with NAFLD Activity Score (NAS) 5-8 compared with lower NAS, and three (miR-193a-5p, miR-378d, miR-378e) increased but one (miR-19b-3p) decreased in steatosis, activity, and fibrosis "activity" (SAF-A) score 2-4 compared with lower SAF-A. The significant findings for miR-193a-5p were replicated in the additional NAFLD cohort. Studies in Hep G2 cells showed that following palmitic acid treatment, miR-193a-5p expression decreased significantly. Gene targets for miR-193a-5p were investigated in liver RNAseq data for a case subgroup (n=80); liver GPX8 levels correlated positively with serum miR-193a-5p. Conclusions: Serum miR-193a-5p levels correlate strongly with NAFLD activity grade and fibrosis stage. MiR-193a-5p may have a role in the hepatic response to oxidative stress and is a potential clinically tractable circulating biomarker for progressive NAFLD
    corecore