1,084 research outputs found

    Maximal Force Characteristics of the Ca\u3csup\u3e2+\u3c/sup\u3e-Powered Actuator of \u3ci\u3eVorticella convallaria\u3c/i\u3e

    Get PDF
    The millisecond stalk contraction of the sessile ciliate Vorticella convallaria is powered by energy from Ca2+ binding to generate contractile forces of ~10 nN. Its contractile organelle, the spasmoneme, generates higher contractile force under increased stall resistances. By applying viscous drag force to contracting V. convallaria in a microfluidic channel, we observed that the mechanical force and work of the spasmoneme depended on the stalk length, i.e., the maximum tension (150–350 nN) and work linearly depended on the stalk length (~2.5 nN and ~30 fJ per 1 mm of the stalk). This stalk-length dependency suggests that motor units of the spasmoneme may be organized in such a way that the mechanical force and work of each unit cumulate in series along the spasmoneme

    The evolution of inverted magnetic fields through the inner heliosphere

    Get PDF
    Local inversions are often observed in the heliospheric magnetic field (HMF), but their origins and evolution are not yet fully understood.Parker Solar Probe has recently observed rapid, AlfvĂ©nic, HMF inversions in the inner heliosphere, known as ‘switchbacks’, which have been interpreted as the possible remnants of coronal jets. It has also been suggested that inverted HMF may be produced by near-Sun interchange reconnection; a key process in mechanisms proposed for slow solar wind release. These cases suggest that the source of inverted HMF is near the Sun, and it follows that these inversions would gradually decay and straighten as they propagate out through the heliosphere. Alternatively, HMF inversions could form during solar wind transit, through phenomena such velocity shears, draping over ejecta, or waves and turbulence. Such processes are expected to lead to a qualitatively radial evolution of inverted HMF structures. Using Helios measurements spanning 0.3–1 AU, we examine the occurrence rate of inverted HMF, as well as other magnetic field morphologies, as a function of radial distance r, and find that it continually increases. This trend may be explained by inverted HMF observed between 0.3–1 AU being primarily driven by one or more of the above in-transit processes, rather than created at the Sun. We make suggestions as to the relative importance of these different processes based on the evolution of the magnetic field properties associated with inverted HMF. We also explore alternative explanations outside of our suggested driving processes which may lead to the observed trend

    Force Generation in Kinesin Hinges on Cover-Neck Bundle Formation

    Get PDF
    SummaryIn kinesin motors, a fundamental question concerns the mechanism by which ATP binding generates the force required for walking. Analysis of available structures combined with molecular dynamics simulations demonstrates that the conformational change of the neck linker involves the nine-residue-long N-terminal region, the cover strand, as an element that is essential for force generation. Upon ATP binding, it forms a ÎČ sheet with the neck linker, the cover-neck bundle, which induces the forward motion of the neck linker, followed by a latch-type binding to the motor head. The estimated stall force and anisotropic response to external loads calculated from the model agree with force-clamp measurements. The proposed mechanism for force generation by the cover-neck bundle formation appears to apply to several kinesin families. It also elucidates the design principle of kinesin as the smallest known processive motor

    Combined optical trapping and single-molecule fluorescence

    Get PDF
    BACKGROUND: Two of the mainstay techniques in single-molecule research are optical trapping and single-molecule fluorescence. Previous attempts to combine these techniques in a single experiment – and on a single macromolecule of interest – have met with little success, because the light intensity within an optical trap is more than ten orders of magnitude greater than the light emitted by a single fluorophore. Instead, the two techniques have been employed sequentially, or spatially separated by distances of several micrometers within the sample, imposing experimental restrictions that limit the utility of the combined method. Here, we report the development of an instrument capable of true, simultaneous, spatially coincident optical trapping and single-molecule fluorescence. RESULTS: We demonstrate the capability of the apparatus by studying force-induced strand separation of a rhodamine-labeled, 15 base-pair segment of double-stranded DNA, with force applied perpendicular to the axis of the DNA molecule. As expected, we observed abrupt mechanical transitions corresponding to the unzipping of DNA at a critical force. Transitions occurred concomitant with changes in the fluorescence of dyes attached at the duplex ends, which became unquenched upon strand separation. CONCLUSIONS: Through careful optical design, the use of high-performance spectral notch filters, a judicious choice of fluorophores, and the rapid acquisition of data gained by computer-automating the experiment, it is possible to perform combined optical trapping and single-molecule fluorescence. This opens the door to many types of experiment that employ optical traps to supply controlled external loads while fluorescent molecules report concurrent information about macromolecular structure
    • 

    corecore