27 research outputs found

    Investigating complement mediated interference in class I HLA-specific antibodies following renal transplantation

    Get PDF
    Introduction Single antigen bead testing (SAB) for HLA-specific antibody enables efficient organ allocation and aids in the diagnosis of antibody mediated rejection. In this retrospective cohort study, a population of kidney transplant recipients possessing HLA Class I antibodies was used to evaluate the best method for resolving complement interference, the so called “prozone” effect. The aim was to compare the use of EDTA versus a Biotin-Streptavidin Complex as methodological approaches for abating the prozone effect using a fixed 1 in 10 dilution as validation. Methods One hundred and seventeen patients transplanted in our centre between 2009 and 2014 were identified as having class I HLA-specific antibody(−ies) using a Labscreen® Mixed assay. Positive sera underwent class I HLA-specific SAB testing; for comparison a standard SAB with and without EDTA, BSC and dilution (1 in 10) modifications were utilised. Samples were processed on the Luminex platform generating 11,349 bead reactions for analysis. Results We identified sera from 23 patients giving rise to 170 bead reactions showing complement interference. Using linear modelling, we observed slightly higher MFIs on average in both EDTA and BSC modifications when compared to the standard assay, allowing the nominal threshold MFI of 2000 in the standard assay to be adjusted to 2097 and 2033 in the EDTA and BSC assays respectively. We calculated 99% prediction intervals to establish outlier bead reactions for each assay. The 1 in 10 dilution was used as a crosscheck for determining which prozone reactions were overcome by EDTA and BSC. Using ROC curve analysis, EDTA was found to be ~90% sensitive and 100% specific compared to BSC which was ~60% sensitive and 100% specific in ameliorating prozone positive reactions at the thresholds defined by linear models. Discussion Our data indicates that both EDTA and BSC are suitable assays in overcoming CMI. We recommend that all clinical laboratories adopt a validated assay designed specifically to abrogate CMI for all potential renal transplant recipients, as the standard assay is inhibited in nearly 20% of a post-transplant cohort

    Industrially-relevant polymerization-induced self-assembly formulations in non-polar solvents: RAFT dispersion polymerization of benzyl methacrylate

    Get PDF
    Industrially-sourced mineral oil and a poly(α-olefin) are used as solvents for the reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) using a poly(lauryl methacrylate) macromolecular chain transfer agent (PLMA macro-CTA) at 90 °C. The insolubility of the growing PBzMA chains under such conditions leads to polymerization-induced self-assembly (PISA), whereby poly(lauryl methacrylate)-poly(benzyl methacrylate) (PLMA-PBzMA) diblock copolymer spheres, worms or vesicles are produced directly as concentrated dispersions. The particular diblock copolymer composition required to access each individual morphology depends on the nature of the oil. Moreover, the solvent type also affects important properties of the physical free-standing gels that are formed by the PLMA-PBzMA worm dispersions, including the storage modulus (G′), critical gelation temperature (CGT) and critical gelation concentration (CGC). Spherical PLMA-PBzMA diblock copolymer nanoparticles can be prepared at up to 50% w/w solids and an efficient ‘one-pot’ protocol involving solution polymerization of LMA followed immediately by dispersion polymerization of BzMA has been developed. The latter formulation enables high BzMA conversions to be achieved, with spherical nanoparticles being produced at 30% w/w solids

    Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization

    Get PDF
    There is considerable current interest in polymerization-induced self-assembly (PISA) via reversible addition–fragmentation chain transfer (RAFT) polymerization as a versatile and efficient route to various types of block copolymer nano-objects. Many successful PISA syntheses have been conducted in water using either RAFT aqueous dispersion polymerization or RAFT aqueous emulsion polymerization. In contrast, this review article is focused on the growing number of RAFT PISA formulations developed for non-aqueous media. A wide range of monomers have been utilized for both the stabilizer and core-forming blocks to produce diblock copolymer nanoparticles in either polar or non-polar media (including supercritical CO2 and ionic liquids) via RAFT dispersion polymerization. Such nanoparticles possess spherical, worm-like or vesicular morphologies, often with controllable size and functionality. Detailed characterization of such sterically stabilized diblock copolymer dispersions provides important insights into the various morphological transformations that can occur both during the PISA synthesis and also on subsequent exposure to a suitable external stimulus (e.g. temperature)

    Thermo-responsive Diblock Copolymer Worm Gels in Non-polar Solvents

    Get PDF
    Benzyl methacrylate (BzMA) is polymerized using a poly(lauryl methacrylate) macromolecular chain transfer agent (PLMA macro-CTA) using reversible addition–fragmentation chain transfer (RAFT) polymerization at 70 °C in n-dodecane. This choice of solvent leads to an efficient dispersion polymerization, with polymerization-induced self-assembly (PISA) occurring via the growing PBzMA block to produce a range of PLMA–PBzMA diblock copolymer nano-objects, including spheres, worms, and vesicles. In the present study, particular attention is paid to the worm phase, which forms soft free-standing gels at 20 °C due to multiple inter-worm contacts. Such worm gels exhibit thermo-responsive behavior: heating above 50 °C causes degelation due to the onset of a worm-to-sphere transition. Degelation occurs because isotropic spheres interact with each other much less efficiently than the highly anisotropic worms. This worm-to-sphere thermal transition is essentially irreversible on heating a dilute solution (0.10% w/w) but is more or less reversible on heating a more concentrated dispersion (20% w/w). The relatively low volatility of n-dodecane facilitates variable-temperature rheological studies, which are consistent with eventual reconstitution of the worm phase on cooling to 20 °C. Variable-temperature 1H NMR studies conducted in d26-dodecane confirm partial solvation of the PBzMA block at elevated temperature: surface plasticization of the worm cores is invoked to account for the observed change in morphology, because this is sufficient to increase the copolymer curvature and hence induce a worm-to-sphere transition. Small-angle X-ray scattering and TEM are used to investigate the structural changes that occur during the worm-to-sphere-to-worm thermal cycle; experiments conducted at 1.0 and 5.0% w/w demonstrate the concentration-dependent (ir)reversibility of these morphological transitions

    Outcomes following small bowel obstruction due to malignancy in the national audit of small bowel obstruction

    Get PDF
    Introduction Patients with cancer who develop small bowel obstruction are at high risk of malnutrition and morbidity following compromise of gastrointestinal tract continuity. This study aimed to characterise current management and outcomes following malignant small bowel obstruction. Methods A prospective, multicentre cohort study of patients with small bowel obstruction who presented to UK hospitals between 16th January and 13th March 2017. Patients who presented with small bowel obstruction due to primary tumours of the intestine (excluding left-sided colonic tumours) or disseminated intra-abdominal malignancy were included. Outcomes included 30-day mortality and in-hospital complications. Cox-proportional hazards models were used to generate adjusted effects estimates, which are presented as hazard ratios (HR) alongside the corresponding 95% confidence interval (95% CI). The threshold for statistical significance was set at the level of P ≤ 0.05 a-priori. Results 205 patients with malignant small bowel obstruction presented to emergency surgery services during the study period. Of these patients, 50 had obstruction due to right sided colon cancer, 143 due to disseminated intraabdominal malignancy, 10 had primary tumours of the small bowel and 2 patients had gastrointestinal stromal tumours. In total 100 out of 205 patients underwent a surgical intervention for obstruction. 30-day in-hospital mortality rate was 11.3% for those with primary tumours and 19.6% for those with disseminated malignancy. Severe risk of malnutrition was an independent predictor for poor mortality in this cohort (adjusted HR 16.18, 95% CI 1.86 to 140.84, p = 0.012). Patients with right-sided colon cancer had high rates of morbidity. Conclusions Mortality rates were high in patients with disseminated malignancy and in those with right sided colon cancer. Further research should identify optimal management strategy to reduce morbidity for these patient groups

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Ecological impact and spread of an invasive paper wasp in New Zealand (Hymenoptera: Vespidae)

    No full text
    Social wasps are considered among the most successful and impactful invasive species in the world. One species, Polistes dominula has spread from its native Mediterranean range to every continent except Antarctica. This wasp reached New Zealand in the last decade where it has established in the north of the South Island, however, reports of its presence are increasing throughout the country. Due to its recent arrival in New Zealand, little is known about where this species is likely to establish or what impacts it may have on local insect communities. In this thesis, I conducted two studies to investigate these questions, providing valuable information that may inform future management of this invasive species. In chapter 2, I used two bioclimatic modelling methods to predict areas of suitable habitat across four regions in the southern hemisphere. These models were informed by global temperature and precipitation data as well as global distribution occurrence data of P. dominula. These data were used to estimate conditions most highly correlated with the presence of this wasp. The models identified large areas across the target regions that were climatically suitable for the establishment of P. dominula. Many of these areas are not known to currently contain populations of this species, representing habitat potentially vulnerable to further invasion by P. dominula. Areas across South America, South Africa and Australia were predicted to be climatically suitable. In New Zealand, much of the North Island and eastern parts of the South Island were predicted to be suitable habitat for this wasp. These results suggest that P. dominula could potentially establish across more of the country and expand its invaded range. Information provided by these models may guide conservation and biosecurity management by highlighting key areas where prevention and mitigation should be prioritized. In chapter 3, I used molecular diet analysis to investigate the range of prey being utilised by P. dominula in New Zealand. Using DNA barcoding, larval gut contents of P. dominula and another closely related species, Polistes chinensis, were analysed to identify what species were present in the diet of both wasps. Butterflies and moths (Lepidoptera) were found to be the most highly represented order in both species’ diets. True bugs (Hemiptera) and flies (Diptera) were also abundant. Both wasps were shown to consume a range of native and introduced species including a number of agricultural pests. P. dominula was found to utilise a wider range of prey than P. chinensis. This more diverse prey range, combined with known differences in nesting behaviour, suggest that P. dominula may represent a more significant threat to invertebrate diversity than the already well-established P. chinensis. These results may inform conservation and biosecurity managers on which species are most at risk where this new invasive wasp becomes established. This thesis provides insights into the potential impacts of a new invasive species to New Zealand. Both chapters represent the first time that these methods have been used to study P. dominula. This work highlights the need for continued monitoring of wasp populations throughout New Zealand, especially in regions highlighted as vulnerable to P. dominula establishment. We also suggest the need to prioritise the conservation of ‘at-risk’ species in coastal and human-altered habitats. Increased public engagement through the citizen-science initiatives should be encouraged while more research into management and control methods is recommended.</p

    Tutkivan oppimisen menetelmän hyödyntäminen eri koulutusasteiden opetuksessa

    Get PDF
    Tässä työssä pohdimme sitä, miten tutkivan oppimisen menetelmää käytetään ammatillisessa opetuksessa niin ammattiopetuksessa kuin ammattikorkeakouluopetuksessa. Työn lähtökohtana ovat ryhmäläisten omat työpaikat, joiden toimintatapoja valotetaan neljän eri käytännön esimerkin valossa. Työn alussa perehdymme tutkivan oppimisen teoriaan ja sisältöön sekä hieman opetussuunnitelmiin. Tämän jälkeen käymme läpi mainitut neljä esimerkkiä kolmesta eri oppilaitoksesta; kaksi esimerkeistä on laajoja ohjelmia ja kaksi kuvaavat käytännön tason lähestymistapoja

    Bioclimatic Modelling Identifies Suitable Habitat for the Establishment of the Invasive European Paper Wasp (Hymenoptera: Vespidae) across the Southern Hemisphere

    No full text
    Species distribution models (SDMs) are tools used by ecologists to help predict the spread of invasive species. Information provided by these models can help direct conservation and biosecurity efforts by highlighting areas likely to contain species of interest. In this study, two models were created to investigate the potential range expansion of Polistes dominula Christ (Hymenoptera: Vespidae) in the southern hemisphere. This palearctic species has spread to invade North and South America, South Africa, Australia, and more recently New Zealand. Using the BIOCLIM and MAXENT modelling methods, regions that were suitable for P. dominula were identified based on climate data across four regions in the southern hemisphere. In South America areas of central Chile, eastern Argentina, parts of Uruguay, and southern Brazil were identified as climatically suitable for the establishment of P. dominula. Similarly, southern parts of South Africa and Australia were identified by the model to be suitable as well as much of the North Island and east of the South Island of New Zealand. Based on outputs from both models, significant range expansion by P. dominula is possible across its more southern invaded ranges
    corecore