106 research outputs found

    A Feasibility Study on Indoor Localization and Multi-person Tracking Using Sparsely Distributed Camera Network with Edge Computing

    Full text link
    Camera-based activity monitoring systems are becoming an attractive solution for smart building applications with the advances in computer vision and edge computing technologies. In this paper, we present a feasibility study and systematic analysis of a camera-based indoor localization and multi-person tracking system implemented on edge computing devices within a large indoor space. To this end, we deployed an end-to-end edge computing pipeline that utilizes multiple cameras to achieve localization, body orientation estimation and tracking of multiple individuals within a large therapeutic space spanning 1700m21700m^2, all while maintaining a strong focus on preserving privacy. Our pipeline consists of 39 edge computing camera systems equipped with Tensor Processing Units (TPUs) placed in the indoor space's ceiling. To ensure the privacy of individuals, a real-time multi-person pose estimation algorithm runs on the TPU of the computing camera system. This algorithm extracts poses and bounding boxes, which are utilized for indoor localization, body orientation estimation, and multi-person tracking. Our pipeline demonstrated an average localization error of 1.41 meters, a multiple-object tracking accuracy score of 88.6\%, and a mean absolute body orientation error of 29\degree. These results shows that localization and tracking of individuals in a large indoor space is feasible even with the privacy constrains

    Validation of a case definition to define chronic dialysis using outpatient administrative data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Administrative health care databases offer an efficient and accessible, though as-yet unvalidated, approach to studying outcomes of patients with chronic kidney disease and end-stage renal disease (ESRD). The objective of this study is to determine the validity of outpatient physician billing derived algorithms for defining chronic dialysis compared to a reference standard ESRD registry.</p> <p>Methods</p> <p>A cohort of incident dialysis patients (Jan. 1 - Dec. 31, 2008) and prevalent chronic dialysis patients (Jan 1, 2008) was selected from a geographically inclusive ESRD registry and administrative database. Four administrative data definitions were considered: at least 1 outpatient claim, at least 2 outpatient claims, at least 2 outpatient claims at least 90 days apart, and continuous outpatient claims at least 90 days apart with no gap in claims greater than 21 days. Measures of agreement of the four administrative data definitions were compared to a reference standard (ESRD registry). Basic patient characteristics are compared between all 5 patient groups.</p> <p>Results</p> <p>1,118,097 individuals formed the overall population and 2,227 chronic dialysis patients were included in the ESRD registry. The three definitions requiring at least 2 outpatient claims resulted in kappa statistics between 0.60-0.80 indicating "substantial" agreement. "At least 1 outpatient claim" resulted in "excellent" agreement with a kappa statistic of 0.81.</p> <p>Conclusions</p> <p>Of the four definitions, the simplest (at least 1 outpatient claim) performed comparatively to other definitions. The limitations of this work are the billing codes used are developed in Canada, however, other countries use similar billing practices and thus the codes could easily be mapped to other systems. Our reference standard ESRD registry may not capture all dialysis patients resulting in some misclassification. The registry is linked to on-going care so this is likely to be minimal. The definition utilized will vary with the research objective.</p

    25-Hydroxyvitamin D levels and chronic kidney disease in the AusDiab (Australian Diabetes, Obesity and Lifestyle) study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low 25-hydroxy vitamin D (25(OH)D) levels have been associated with an increased risk of albuminuria, however an association with glomerular filtration rate (GFR) is not clear. We explored the relationship between 25(OH)D levels and prevalent chronic kidney disease (CKD), albuminuria and impaired GFR, in a national, population-based cohort of Australian adults (AusDiab Study).</p> <p>Methods</p> <p>10,732 adults ≥25 years of age participating in the baseline survey of the AusDiab study (1999–2000) were included. The GFR was estimated using an enzymatic creatinine assay and the CKD-EPI equation, with CKD defined as eGFR <60 ml/min/1.73 m<sup>2</sup>. Albuminuria was defined as a spot urine albumin to creatinine ratio (ACR) of ≥2.5 mg/mmol for men and ≥3.5 for women. Serum 25(OH)D levels of <50 nmol/L were considered vitamin D deficient. The associations between 25(OH)D level, albuminuria and impaired eGFR were estimated using multivariate regression models.</p> <p>Results</p> <p>30.7% of the study population had a 25(OH)D level <50 nmol/L (95% CI 25.6-35.8). 25(OH)D deficiency was significantly associated with an impaired eGFR in the univariate model (OR 1.52, 95% CI 1.07-2.17), but not in the multivariate model (OR 0.95, 95% CI 0.67-1.35). 25(OH)D deficiency was significantly associated with albuminuria in the univariate (OR 2.05, 95% CI 1.58-2.67) and multivariate models (OR 1.54, 95% CI 1.14-2.07).</p> <p>Conclusions</p> <p>Vitamin D deficiency is common in this population, and 25(OH)D levels of <50 nmol/L were independently associated with albuminuria, but not with impaired eGFR. These associations warrant further exploration in prospective and interventional studies.</p

    Relation of Serum Vitamin D to Risk of Mitral Annular and Aortic Valve Calcium (from the Multi-Ethnic Study of Atherosclerosis)

    Full text link
    Serum 25-hydroxyvitamin D [25(OH)D] concentration has been identified as a possible modifiable risk factor for cardiovascular disease (CVD). We hypothesized that serum 25(OH)D concentration would be associated with calcifications of the left-sided heart valves, which are markers of CVD risk. Aortic valve calcium (AVC) and mitral annular calcium (MAC) were quantified from cardiac computed tomography scans performed on 5,530 Multi-Ethnic Study of Atherosclerosis participants at the baseline examination (2000 to 2002) and at a follow-up visit at either Examination 2 (2002 to 2004) or Examination 3 (2004 to 2005). 25(OH)D was measured from serum samples collected at the baseline examination. Using relative risk regression, we evaluated the multivariable-adjusted risk of prevalent and incident AVC and MAC in this ethnically diverse population free of clinical CVD at baseline. The mean age of participants was 62 ± 10 years; 53% were women, 40% white, 26% black, 21% Hispanic, and 12% Chinese. Prevalent AVC and MAC were observed in 12% and 9% of study sample, respectively. There were no significant associations between 25(OH)D and prevalent AVC or MAC. Over a mean follow-up of 2.5 years, 4% developed incident AVC and 5% developed incident MAC. After adjusting for demographic variables, each 10 ng/ml higher serum 25(OH)D was associated with a 15% (relative risk 0.85, 95% confidence interval 0.74 to 0.98) lower risk of incident MAC but not AVC. However, this association was no longer significant after adjusting for lifestyle and CVD risk factors. Results suggest a possible link between serum 25(OH)D and the risk for incident MAC, but future studies with longer follow-up are needed to further test this association

    Meta-Analysis of the Alzheimer\u27s Disease Human Brain Transcriptome and Functional Dissection in Mouse Models.

    Get PDF
    We present a consensus atlas of the human brain transcriptome in Alzheimer\u27s disease (AD), based on meta-analysis of differential gene expression in 2,114 postmortem samples. We discover 30 brain coexpression modules from seven regions as the major source of AD transcriptional perturbations. We next examine overlap with 251 brain differentially expressed gene sets from mouse models of AD and other neurodegenerative disorders. Human-mouse overlaps highlight responses to amyloid versus tau pathology and reveal age- and sex-dependent expression signatures for disease progression. Human coexpression modules enriched for neuronal and/or microglial genes broadly overlap with mouse models of AD, Huntington\u27s disease, amyotrophic lateral sclerosis, and aging. Other human coexpression modules, including those implicated in proteostasis, are not activated in AD models but rather following other, unexpected genetic manipulations. Our results comprise a cross-species resource, highlighting transcriptional networks altered by human brain pathophysiology and identifying correspondences with mouse models for AD preclinical studies

    TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions

    Get PDF
    Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis, and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA-binding protein of 43 kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here, we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n = 14), with the major allele correlated with later age at death (p = 0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n = 75), again finding that the major allele associates with later age at death (p = 0.016), as well as later age at onset (p = 0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease
    corecore