8 research outputs found

    WALLABY Early Science - I. The NGC 7162 Galaxy Group

    Full text link
    We present Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY) early science results from the Australian Square Kilometre Array Pathfinder (ASKAP) observations of the NGC 7162 galaxy group. We use archival HIPASS and Australia Telescope Compact Array (ATCA) observations of this group to validate the new ASKAP data and the data reduction pipeline ASKAPsoft. We detect six galaxies in the neutral hydrogen (HI) 21-cm line, expanding the NGC 7162 group membership from four to seven galaxies. Two of the new detections are also the first HI detections of the dwarf galaxies, AM 2159-434 and GALEXASC J220338.65-431128.7, for which we have measured velocities of cz=2558cz=2558 and cz=2727cz=2727 km s−1^{-1}, respectively. We confirm that there is extended HI emission around NGC 7162 possibly due to past interactions in the group as indicated by the 40∘40^{\circ} offset between the kinematic and morphological major axes for NGC 7162A, and its HI richness. Taking advantage of the increased resolution (factor of ∼1.5\sim1.5) of the ASKAP data over archival ATCA observations, we fit a tilted ring model and use envelope tracing to determine the galaxies' rotation curves. Using these we estimate the dynamical masses and find, as expected, high dark matter fractions of fDM∼0.81−0.95f_{\mathrm{DM}}\sim0.81-0.95 for all group members. The ASKAP data are publicly available.Comment: 20 pages, 11 figures, accepted for publication in MNRA

    Localization and broadband follow-up of the gravitational-wave transient GW 150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    A Single Tube Contactor for Testing Membrane Ozonation

    No full text
    A membrane ozonation contactor was built to investigate ozonation using tubular membranes and inform computational fluid dynamics (CFD) studies. Non-porous tubular polydimethylsiloxane (PDMS) membranes of 1.0–3.2 mm inner diameter were tested at ozone gas concentrations of 110–200 g/m3 and liquid side velocities of 0.002–0.226 m/s. The dissolved ozone concentration could be adjusted to up to 14 mg O3/L and increased with decreasing membrane diameter and liquid side velocity. Experimental mass transfer coefficients and molar fluxes of ozone were 2.4 × 10−6 m/s and 1.1 × 10−5 mol/(m2 s), respectively, for the smallest membrane. CFD modelling could predict the final ozone concentrations but slightly overestimated mass transfer coefficients and molar fluxes of ozone. Model contaminant degradation experiments and UV light absorption measurements of ozonated water samples in both ozone (O3) and peroxone (H2O2/O3) reaction systems in pure water, river water, wastewater effluent, and solutions containing humic acid show that the contactor system can be used to generate information on the reactivity of ozone with different water matrices. Combining simple membrane contactors with CFD allows for prediction of ozonation performance under a variety of conditions, leading to improved bubble-less ozone systems for water treatment

    A single fast radio burst localized to a massive galaxy at cosmological distance

    No full text
    Fast Radio Bursts (FRBs) are brief radio emissions from distant astronomical sources. Some are known to repeat, but most are single bursts. Non-repeating FRB observations have had insufficient positional accuracy to localize them to an individual host galaxy. We report the interferometric localization of the single pulse FRB 180924 to a position 4 kpc from the center of a luminous galaxy at redshift 0.3214. The burst has not been observed to repeat. The properties of the burst and its host are markedly different from the only other accurately localized FRB source. The integrated electron column density along the line of sight closely matches models of the intergalactic medium, indicating that some FRBs are clean probes of the baryonic component of the cosmic web

    The rapid ASKAP continuum survey I : design and first results

    No full text
    The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700-1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with ∼15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination +41◦ made over a 288-MHz band centred at 887.5 MHz

    Wide-field broad-band radio imaging with phased array feeds : a pilot multi-epoch continuum survey with ASKAP-BETA

    No full text
    The Boolardy Engineering TestArray is a 6 x 12mdish interferometer and the prototype of the Australian Square Kilometre Array Pathfinder (ASKAP), equipped with the first generation of ASKAP's phased array feed (PAF) receivers. These facilitate rapid wide-area imaging via the deployment of simultaneous multiple beams within an ~30 deg2 field of view. By cycling the array through 12 interleaved pointing positions and using nine digitally formed beams, we effectively mimic a traditional 1 h x 108 pointing survey, covering ~150 deg2 over 711-1015 MHz in 12 h of observing time. Three such observations were executed over the course of a week. We verify the full bandwidth continuum imaging performance and stability of the system via self-consistency checks and comparisons to existing radio data. The combined three epoch image has arcminute resolution and a 1σ thermal noise level of 375 μJy beam-1, although the effective noise is a factor of ~3 higher due to residual sidelobe confusion. From this we derive a catalogue of 3722 discrete radio components, using the 35 per cent fractional bandwidth to measure in-band spectral indices for 1037 of them. A search for transient events reveals one significantly variable source within the survey area. The survey covers approximately two-thirds of the Spitzer South Pole Telescope Deep Field. This pilot project demonstrates the viability and potential of using PAFs to rapidly and accurately survey the sky at radio wavelengths

    The ASKAP Variables and Slow Transients (VAST) pilot survey

    No full text
    The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 seconds to ∼5\sim 5 years. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of ∼162\sim 162 hours of observations conducted at a central frequency of 888~MHz between 2019 August and 2020 August, with a typical rms sensitivity of 0.24~mJy~beam−1^{-1} and angular resolution of 12−2012-20 arcseconds. There are 113 fields, \red{each of which was observed for 12 minutes integration time}, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5\,131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1\,646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039--5617. Another seven are stars, four of which have no previously reported radio detection (SCR~J0533--4257, LEHPM~2-783, UCAC3~89--412162 and 2MASS J22414436--6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multiwavelength counterparts and are yet to be identified

    Contested Cultural Heritage: A Selective Historiography

    No full text
    corecore