7 research outputs found

    Estimating Virus Production Rates in Aquatic Systems

    Get PDF
    Viruses are pervasive components of marine and freshwater systems, and are known to be significant agents of microbial mortality. Developing quantitative estimates of this process is critical as we can then develop better models of microbial community structure and function as well as advance our understanding of how viruses work to alter aquatic biogeochemical cycles. The virus reduction technique allows researchers to estimate the rate at which virus particles are released from the endemic microbial community. In brief, the abundance of free (extracellular) viruses is reduced in a sample while the microbial community is maintained at near ambient concentration. The microbial community is then incubated in the absence of free viruses and the rate at which viruses reoccur in the sample (through the lysis of already infected members of the community) can be quantified by epifluorescence microscopy or, in the case of specific viruses, quantitative PCR. These rates can then be used to estimate the rate of microbial mortality due to virus-mediated cell lysis

    Genome-wide analysis identifies 12 loci influencing human reproductive behavior.

    Get PDF
    The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits

    Production of viruses during a spring phytoplankton bloom in the South Pacific Ocean near of New Zealand

    No full text
    Lagrangian studies of virus activity in pelagic environments over extended temporal scales are rare. To address this, viruses and bacteria were examined during the course of a natural phytoplankton bloom in the pelagic South Pacific Ocean east of New Zealand. Daily samples were collected in a mesoscale eddy from year days 263-278 (September 19th-October 4th, 2008). The productive bloom transitioned from a diatom to a pico- and nanoplankton-dominated system, resulting in chlorophyll a concentrations up to 2.43 μg L -1. Virus abundances fluctuated c. 10-fold (1.8 × 10 10-1.3 × 10 11 L -1) over 16 days. The production rates of virus particles were high compared with those reported in other marine systems, ranging from 1.4 × 10 10 to 2.1 × 10 11 L -1 day -1. Our observations suggest viruses contributed significantly to the mortality of bacteria throughout the bloom, with 19-216% of the bacterial standing stock being lysed daily. This mortality released nutrient elements (N, Fe) that likely helped sustain the bloom through the sampling period. Parametric analyses found significant correlations with both biotic (e.g. potential host abundances) and abiotic parameters (e.g. nutrient concentrations, temperature). These observations demonstrate that viruses may be critical in the extended maintenance of regeneration-driven biological production

    Molecular Enumeration of an Ecologically Important Cyanophage in a Laurentian Great Lake ▿

    No full text
    Considerable research has shown that cyanobacteria and the viruses that infect them (cyanophage) are pervasive and diverse in global lake populations. Few studies have seasonally analyzed freshwater systems, and little is known about the bacterial and viral communities that coexist during the harsh winters of the Laurentian Great Lakes. Here, we employed quantitative PCR to estimate the abundance of cyanomyoviruses in this system, using the portal vertex g20 gene as a proxy for cyanophage abundance and to determine the potential ecological relevance of these viruses. Cyanomyoviruses were abundant in both the summer and the winter observations, with up to 3.1 × 106 copies of g20 genes ml−1 found at several stations and depths in both seasons, representing up to 4.6% of the total virus community. Lake Erie was productive during both our observations, with high chlorophyll a concentrations in the summer (up to 10.3 μg liter−1) and winter (up to 5.2 μg liter−1). Both bacterial and viral abundances were significantly higher during the summer than during the winter (P < 0.05). Summer bacterial abundances ranged from 3.3 × 106 to 1.6 × 107 ml−1 while winter abundances ranged between ∼3.4 × 105 and 1.2 × 106 ml−1. Total virus abundances were high during both months, with summer abundances significantly higher at most stations, ranging from 6.5 × 107 to 8.8 × 107 ml−1, and with winter abundances ranging from 3.4 × 107 to 6.6 × 107 ml−1. This work confirms that putative cyanomyoviruses are ubiquitous in both summer and winter months in this large freshwater lake system and that they are an abundant component of the virioplankton group
    corecore