142 research outputs found

    Transient Regional Wall Motion Abnormality and Increased Wall Thickness of the Left Ventricle in Acute Myopericarditis Occurring in the Puerperium

    Get PDF
    An unusual sequence of echocardiographic abnormalities of a 25-year-old female with acute myopericarditis was described. She presented with shortness of breath and a high body temperature after the birth of her first child. Regional asynergy and increased thickness of the left ventricle were transiently observed by echocardiography. It is considered that these abnormalities resulted from inflammatory changes in heart muscle such as edema, which was ascribable to acute myopericarditis in the puerperium

    NADPH oxidase and ROS in kidney growth

    Get PDF
    Ureteric bud branching and nephrogenesis are performed through large-scale proliferation and apoptosis events during renal development. Reactive oxygen species (ROS), produced by NADPH oxidase, may contribute to cell behaviors, including proliferation and apoptosis. We investigated the role of NADPH oxidase expression and ROS production in developing kidneys. Immunohistochemistry revealed that NADPH oxidase components were expressed on epithelial cells in ureteric bud branches, as well as on immature glomerular cells and epithelial cells in nephrogenic zones. ROS production, detected by dihydroethidium assay, was strongly observed in ureteric bud branches and nephrogenic zones, corresponding with NADPH oxidase localization. Organ culture of E14 kidneys revealed that the inhibition of NADPH oxidase significantly reduced the number of ureteric bud branches and tips, consistent with reduced ROS production. This was associated with reduced expression of phosphorylated ERK1/2 and increased expression of cleaved caspase-3. Organ culture of E18 kidneys showed that the inhibition of NADPH oxidase reduced nephrogenic zone size, accompanied by reduced ROS production, fewer proliferating cell nuclear antigen-positive cells, lower p-ERK1/2 expression, and increased expression of cleaved caspase-3. These results demonstrate that ROS produced by NADPH oxidase might play an important role in ureteric bud branching and nephrogenesis by regulating proliferation and apoptosis

    BdWRKY38 is required for the incompatible interaction of Brachypodium distachyon with the necrotrophic fungus Rhizoctonia solani

    Get PDF
    Rhizoctonia solani is a soil‐borne necrotrophic fungus that causes sheath blight in grasses. The basal resistance of compatible interactions between R. solani and rice is known to be modulated by some WRKY transcription factors (TFs). However, genes and defense responses involved in incompatible interaction with R. solani remain unexplored, because no such interactions are known in any host plants. Recently, we demonstrated that Bd3‐1, an accession of the model grass Brachypodium distachyon, is resistant to R. solani and, upon inoculation with the fungus, undergoes rapid induction of genes responsive to the phytohormone salicylic acid (SA) that encode the WRKY TFs BdWRKY38 and BdWRKY44. Here, we show that endogenous SA and these WRKY TFs positively regulate this accession‐specific R. solani resistance. In contrast to a susceptible accession (Bd21), the infection process in the resistant accessions Bd3‐1 and Tek‐3 was suppressed at early stages before the development of fungal biomass and infection machinery. A comparative transcriptome analysis during pathogen infection revealed that putative WRKY‐dependent defense genes were induced faster in the resistant accessions than in Bd21. A gene regulatory network (GRN) analysis based on the transcriptome dataset demonstrated that BdWRKY38 was a GRN hub connected to many target genes specifically in resistant accessions, whereas BdWRKY44 was shared in the GRNs of all three accessions. Moreover, overexpression of BdWRKY38 increased R. solani resistance in Bd21. Our findings demonstrate that these resistant accessions can activate an incompatible host response to R. solani, and BdWRKY38 regulates this response by mediating SA signaling
    corecore