216 research outputs found

    Visual parameter optimisation for biomedical image processing

    Get PDF
    Background: Biomedical image processing methods require users to optimise input parameters to ensure high quality output. This presents two challenges. First, it is difficult to optimise multiple input parameters for multiple input images. Second, it is difficult to achieve an understanding of underlying algorithms, in particular, relationships between input and output. Results: We present a visualisation method that transforms users’ ability to understand algorithm behaviour by integrating input and output, and by supporting exploration of their relationships. We discuss its application to a colour deconvolution technique for stained histology images and show how it enabled a domain expert to identify suitable parameter values for the deconvolution of two types of images, and metrics to quantify deconvolution performance. It also enabled a breakthrough in understanding by invalidating an underlying assumption about the algorithm. Conclusions: The visualisation method presented here provides analysis capability for multiple inputs and outputs in biomedical image processing that is not supported by previous analysis software. The analysis supported by our method is not feasible with conventional trial-and-error approaches

    Quantifying the contribution of material and junction resistances in nano-networks

    Full text link
    Networks of nanowires and nanosheets are important for many applications in printed electronics. However, the network conductivity and mobility are usually limited by the inter-particle junction resistance, a property that is challenging to minimise because it is difficult to measure. Here, we develop a simple model for conduction in networks of 1D or 2D nanomaterials, which allows us to extract junction and nanoparticle resistances from particle-size-dependent D.C. resistivity data of conducting and semiconducting materials. We find junction resistances in porous networks to scale with nanoparticle resistivity and vary from 5 Ohm for silver nanosheets to 25 GOhm for WS2 nanosheets. Moreover, our model allows junction and nanoparticle resistances to be extracted from A.C. impedance spectra of semiconducting networks. Impedance data links the high mobility (~7 cm2/Vs) of aligned networks of electrochemically exfoliated MoS2 nanosheets to low junction resistances of ~670 kOhm. Temperature-dependent impedance measurements allow us to quantitatively differentiate intra-nanosheet phonon-limited band-like transport from inter-nanosheet hopping for the first time.Comment: 5 figure

    The HST/ACS Coma Cluster Survey. II. Data Description and Source Catalogs

    Get PDF
    The Coma cluster was the target of a HST-ACS Treasury program designed for deep imaging in the F475W and F814W passbands. Although our survey was interrupted by the ACS instrument failure in 2007, the partially completed survey still covers ~50% of the core high-density region in Coma. Observations were performed for 25 fields that extend over a wide range of cluster-centric radii (~1.75 Mpc) with a total coverage area of 274 arcmin^2. The majority of the fields are located near the core region of Coma (19/25 pointings) with six additional fields in the south-west region of the cluster. In this paper we present reprocessed images and SExtractor source catalogs for our survey fields, including a detailed description of the methodology used for object detection and photometry, the subtraction of bright galaxies to measure faint underlying objects, and the use of simulations to assess the photometric accuracy and completeness of our catalogs. We also use simulations to perform aperture corrections for the SExtractor Kron magnitudes based only on the measured source flux and half-light radius. We have performed photometry for ~73,000 unique objects; one-half of our detections are brighter than the 10-sigma point-source detection limit at F814W=25.8 mag (AB). The slight majority of objects (60%) are unresolved or only marginally resolved by ACS. We estimate that Coma members are 5-10% of all source detections, which consist of a large population of unresolved objects (primarily GCs but also UCDs) and a wide variety of extended galaxies from a cD galaxy to dwarf LSB galaxies. The red sequence of Coma member galaxies has a constant slope and dispersion across 9 magnitudes (-21<M_F814W<-13). The initial data release for the HST-ACS Coma Treasury program was made available to the public in 2008 August. The images and catalogs described in this study relate to our second data release

    Inhibition of the Progesterone Nuclear Receptor during the Bone Linear Growth Phase Increases Peak Bone Mass in Female Mice

    Get PDF
    Augmentation of the peak bone mass (PBM) may be one of the most effective interventions to reduce the risk of developing osteoporosis later in life; however treatments to augment PBM are currently limited. Our study evaluated whether a greater PBM could be achieved either in the progesterone nuclear receptor knockout mice (PRKO) or by using a nuclear progesterone receptor (nPR) antagonist, RU486 in mice. Compared to their wild type (WT) littermates the female PRKO mice developed significantly higher cancellous and cortical mass in the distal femurs, and this was associated with increased bone formation. The high bone mass phenotype was partially reproduced by administering RU486 in female WT mice from 1–3 months of age. Our results suggest that the inhibition of the nPR during the rapid bone growth period (1–3 months) increases osteogenesis, which results in acquisition of higher bone mass. Our findings suggest a crucial role for progesterone signaling in bone acquisition and inhibition of the nPR as a novel approach to augment bone mass, which may have the potential to reduce the burden of osteoporosis

    Atypical pathogens in hospitalized patients with community-acquired pneumonia: A worldwide perspective

    Get PDF
    Background: Empirical antibiotic coverage for atypical pathogens in community-acquired pneumonia (CAP) has long been debated, mainly because of a lack of epidemiological data. We aimed to assess both testing for atypical pathogens and their prevalence in hospitalized patients with CAP worldwide, especially in relation with disease severity. Methods: A secondary analysis of the GLIMP database, an international, multicentre, point-prevalence study of adult patients admitted for CAP in 222 hospitals across 6 continents in 2015, was performed. The study evaluated frequency of testing for atypical pathogens, including L. pneumophila, M. pneumoniae, C. pneumoniae, and their prevalence. Risk factors for testing and prevalence for atypical pathogens were assessed through univariate analysis. Results: Among 3702 CAP patients 1250 (33.8%) underwent at least one test for atypical pathogens. Testing varies greatly among countries and its frequency was higher in Europe than elsewhere (46.0% vs. 12.7%, respectively, p &lt; 0.0001). Detection of L. pneumophila urinary antigen was the most common test performed worldwide (32.0%). Patients with severe CAP were less likely to be tested for both atypical pathogens considered together (30.5% vs. 35.0%, p = 0.009) and specifically for legionellosis (28.3% vs. 33.5%, p = 0.003) than the rest of the population. Similarly, L. pneumophila testing was lower in ICU patients. At least one atypical pathogen was isolated in 62 patients (4.7%), including M. pneumoniae (26/251 patients, 10.3%), L. pneumophila (30/1186 patients, 2.5%), and C. pneumoniae (8/228 patients, 3.5%). Patients with CAP due to atypical pathogens were significantly younger, showed less cardiovascular, renal, and metabolic comorbidities in comparison to adult patients hospitalized due to non-atypical pathogen CAP. Conclusions: Testing for atypical pathogens in patients admitted for CAP in poorly standardized in real life and does not mirror atypical prevalence in different settings. Further evidence on the impact of atypical pathogens, expecially in the low-income countries, is needed to guidelines implementation

    Microbiological testing of adults hospitalised with community-acquired pneumonia: An international study

    Get PDF
    This study aimed to describe real-life microbiological testing of adults hospitalised with community-acquired pneumonia (CAP) and to assess concordance with the 2007 Infectious Diseases Society of America (IDSA)/American Thoracic Society (ATS) and 2011 European Respiratory Society (ERS) CAP guidelines. This was a cohort study based on the Global Initiative for Methicillin-resistant Staphylococcus aureus Pneumonia (GLIMP) database, which contains point-prevalence data on adults hospitalised with CAP across 54 countries during 2015. In total, 3702 patients were included. Testing was performed in 3217 patients, and included blood culture (71.1%), sputum culture (61.8%), Legionella urinary antigen test (30.1%), pneumococcal urinary antigen test (30.0%), viral testing (14.9%), acute-phase serology (8.8%), bronchoalveolar lavage culture (8.4%) and pleural fluid culture (3.2%). A pathogen was detected in 1173 (36.5%) patients. Testing attitudes varied significantly according to geography and disease severity. Testing was concordant with IDSA/ATS and ERS guidelines in 16.7% and 23.9% of patients, respectively. IDSA/ATS concordance was higher in Europe than in North America (21.5% versus 9.8%; p&lt;0.01), while ERS concordance was higher in North America than in Europe (33.5% versus 19.5%; p&lt;0.01). Testing practices of adults hospitalised with CAP varied significantly by geography and disease severity. There was a wide discordance between real-life testing practices and IDSA/ATS/ERS guideline recommendations
    corecore