194 research outputs found

    Bottom-up hierarchical self-assembly of chiral porphyrins through coordination and hydrogen bonds

    Get PDF
    A series of chiral synthetic compounds is reported that show intricate but specific hierarchical assembly because of varying positions of coordination and hydrogen bonds. The evolution of the aggregates (followed by absorption spectroscopy and temperature-dependent circular dichroism studies in solution) reveal the influence of the proportion of stereogenic centers in the side groups connected to the chromophore ring in their optical activity and the important role of pyridyl groups in the self-assembly of these chiral macrocycles. The optical activity spans two orders of magnitude depending on composition and constitution. Two of the aggregates show very high optical activity even though the isolated chromophores barely give a circular dichroism signal. Molecular modeling of the aggregates, starting from the pyridine-zinc(II) porphyrin interaction and working up, and calculation of the circular dichroism signal confirm the origin of this optical activity as the chiral supramolecular organization of the molecules. The aggregates show a broad absorption range, between approximately 390 and 475 nm for the transitions associated with the Soret region alone, that spans wavelengths far more than the isolated chromophore. The supramolecular assemblies of the metalloporphyrins in solution were deposited onto highly oriented pyrolitic graphite in order to study their hierarchy in assembly by atomic force microscopy. Zero and one-dimensional aggregates were observed, and a clear dependence on deposition temperature was shown, indicating that the hierarchical assembly took place largely in solution. Moreover, scanning electron microscopy images of porphyrins and metalloporphyrins precipitated under out-of-equilibrium conditions showed the dependence of the number and position of chiral amide groups in the formation of a fibrillar nanomaterial. The combination of coordination and hydrogen bonding in the complicated assembly of these molecules - where there is a clear hierarchy for zinc(II)-pyridyl interaction followed by hydrogen-bonding between amide groups, and then van der Waals interactions - paves the way for the preparation of molecular materials with multiple chromophore environments

    Spectrally-resolved measurement of concentrated light distributions for Fresnel lens concentrators

    Get PDF
    A test method that measures spectrally resolved irradiance distribution for a concentrator photovoltaic (CPV) optical system is presented. In conjunction with electrical I-V curves, it is a means to visualize and characterize the effects of chromatic aberration and nonuniform flux profiles under controllable testing conditions. The indoor characterization test bench, METHOD (Measurement of Electrical, Thermal and Optical Devices), decouples the temperatures of the primary optical element (POE) and the cell allowing their respective effects on optical and electrical performance to be analysed. In varying the temperature of the POE, the effects on electrical efficiency, focal distance, spectral sensitivity, acceptance angle and multi-junction current matching profiles can be quantified. This work presents the calibration procedures to accurately image the spectral irradiance distribution of a CPV system and a study of system behavior over lens temperature

    Binding of a Pyrene-Based Fluorescent Amyloid Ligand to Transthyretin: A Combined Crystallographic and Molecular Dynamics Study

    Get PDF
    Misfolding and aggregation of transthyretin (TTR) cause several amyloid diseases. Besides being an amyloidogenic protein, TTR has an affinity for bicyclic small-molecule ligands in its thyroxine (T4) binding site. One class of TTR ligands are trans-stilbenes. The trans-stilbene scaffold is also widely applied for amyloid fibril-specific ligands used as fluorescence probes and as positron emission tomography tracers for amyloid detection and diagnosis of amyloidosis. We have shown that native tetrameric TTR binds to amyloid ligands based on the trans-stilbene scaffold providing a platform for the determination of high-resolution structures of these important molecules bound to protein. In this study, we provide spectroscopic evidence of binding and X-ray crystallographic structure data on tetrameric TTR complex with the fluorescent salicylic acid-based pyrene amyloid ligand (Py1SA), an analogue of the Congo red analogue X-34. The ambiguous electron density from the X-ray diffraction, however, did not permit Py1SA placement with enough confidence likely due to partial ligand occupancy. Instead, the preferred orientation of the Py1SA ligand in the binding pocket was determined by molecular dynamics and umbrella sampling approaches. We find a distinct preference for the binding modes with the salicylic acid group pointing into the pocket and the pyrene moiety outward to the opening of the T4 binding site. Our work provides insight into TTR binding mode preference for trans-stilbene salicylic acid derivatives as well as a framework for determining structures of TTR-ligand complexes

    Optical properties of wine pigments: theoretical guidelines with new methodological perspectives

    Get PDF
    Wine pigmentation results from the complex chemistry of anthocyanins. Their flavylium cation form is stabilized either by chemical transformation occurring during wine aging (e.g., pyranoanthocyanin formation), or by the formation of non-covalent complexes with (phenolic) copigments. Molecular modeling (quantum mechanics and molecular dynamics) is more and more adapted to understand wine chemistry and pigmentation. The constant developments of theoretical methodologies might get non-specialists easily lost. This manuscript is a review of the theoretical studies dedicated to the field of wine pigments, showing conformational analysis, energetics of the various forms, pigment/copigment (non-)covalent association, and charge transfer excited states. QM/MM calculations are newly performed here, which improve solvent description. The conclusion is a comprehensive guideline for an accurate prediction of light absorption by wine pigments and all related supramolecular processes.P.T. thanks INSERM and the ‘Conseil Régional du Limousin’. Financial support from the Czech Science Foundation (P208/12/G016), the Operational Program Research and Development for Innovations—European Regional Development Fund (project CZ.1.05/2.1.00/03.0058 of the Ministry of Education, Youth and Sports of the Czech Republic), the Barrande Project (No. 7AMB12FR026) and the Operational Program Education for Competitiveness—European Social Fund (project CZ.1.07/2.3.00/20.0058 of the Ministry of Education, Youth and Sports of the Czech Republic) is also gratefully acknowledged. The work at IMDEA was supported by the Spanish Ministerio de Economía y Competitividad (MINECO; project CTQ2011-27317). M.L. thanks the Swedish e-Science Research Center (SeRC) for financial support

    Stacked or folded? impact of chelate cooperativity on the self-assembly pathway to helical nanotubes from dinucleobase monomers

    Get PDF
    Self-assembled nanotubes exhibit impressive biological functions that have always inspired supramolecular scientists in their efforts to develop strategies to build such structures from small molecules through a bottom-up approach. One of these strategies employs molecules endowed with self-recognizing motifs at the edges, which can undergo either cyclization-stacking or folding-polymerization processes that lead to tubular architectures. Which of these self-assembly pathways is ultimately selected by these molecules is, however, often difficult to predict and even to evaluate experimentally. We show here a unique example of two structurally related molecules substituted with complementary nucleobases at the edges (i.e., G:C and A:U) for which the supramolecular pathway taken is determined by chelate cooperativity, that is, by their propensity to assemble in specific cyclic structures through Watson-Crick pairing. Because of chelate cooperativities that differ in several orders of magnitude, these molecules exhibit distinct supramolecular scenarios prior to their polymerization that generate self-assembled nanotubes with different internal monomer arrangements, either stacked or coiled, which lead at the same time to opposite helicities and chiroptical propertiesFunding from the European Research Council (ERC-Starting Grant 279548 PROGRAM-NANO) MCIN (RED2018- 102331-T, PID2020-116921GB-I00, and TED2021-132602BI00), the Italian Ministry of Education, University and Research (PRIN project prot. 2017A4XRCA_003), the Ministry of Education, Youth, and Sports of the Czech Republic (CZ.02.1.01/0.0/0.0/16_019/0000754, e-INFRA CZ (ID:90254)), the Swedish Research Council (2018- 4343), and the Swedish e-Science Research Centre (SeRC) is gratefully acknowledged. The authors also acknowledge the provision of supercomputer resources from the Swedish National Infrastructure for Computing (SNIC). F.A. is grateful to MCIN and Next Generation EU funding for a “Ramon-yCajal” fellowship (RyC-2021-031538-I). A.dJ. is grateful to EU funding from a MSCA-IEF action (897507-SuprAlloCat

    Consequences of conformational flexibility in hydrogen-bond-driven self-assembly processes

    Get PDF
    We report the synthesis and self-assembly of chiral, conformationally flexible C3-symmetrical trisamides. A strong Cotton effect is observed for the supramolecular polymers in linear alkanes but not in cyclic alkanes. MD simulations suggest 2:1 conformations of the amides within the aggregates in both types of solvents, but a chiral bias in only linear alkanes.JAB, MGI, RPAG, EWM and ARAP would like to thank the Gravity program 024.001.035, NWO TOP-PUNT 718.014.003 for financial support and Anneloes Oude Vrielink for TEM imaging. FDM and ML acknowledge the Swedish e-Research Center (SeRC) for financial support, the Swedish Research Council (Grant No. 621-2014-4646), SNIC (Swedish National Infrastructure for Computing) and Dr Julien Idé for providing the code for exciton coupling calculations
    corecore