99 research outputs found

    Equilibrium composition between liquid and clathrate reservoirs on Titan

    Full text link
    Hundreds of lakes and a few seas of liquid hydrocarbons have been observed by the Cassini spacecraft to cover the polar regions of Titan. A significant fraction of these lakes or seas could possibly be interconnected with subsurface liquid reservoirs of alkanes. In this paper, we investigate the interplay that would happen between a reservoir of liquid hydrocarbons located in Titan's subsurface and a hypothetical clathrate reservoir that progressively forms if the liquid mixture diffuses throughout a preexisting porous icy layer. To do so, we use a statistical-thermodynamic model in order to compute the composition of the clathrate reservoir that forms as a result of the progressive entrapping of the liquid mixture. This study shows that clathrate formation strongly fractionates the molecules between the liquid and the solid phases. Depending on whether the structure I or structure II clathrate forms, the present model predicts that the liquid reservoirs would be mainly composed of either propane or ethane, respectively. The other molecules present in the liquid are trapped in clathrates. Any river or lake emanating from subsurface liquid reservoirs that significantly interacted with clathrate reservoirs should present such composition. On the other hand, lakes and rivers sourced by precipitation should contain higher fractions of methane and nitrogen, as well as minor traces of argon and carbon monoxide.Comment: Accepted for publication in Icaru

    Measurements of thermal properties of icy Mars regolith analogs

    Get PDF
    In a series of laboratory experiments, we measure thermal diffusivity, thermal conductivity, and heat capacity of icy regolith created by vapor deposition of water below its triple point and in a low pressure atmosphere. We find that an ice-regolith mixture prepared in this manner, which may be common on Mars, and potentially also present on the Moon, Mercury, comets and other bodies, has a thermal conductivity that increases approximately linearly with ice content. This trend differs substantially from thermal property models based of preferential formation of ice at grain contacts previously applied to both terrestrial and non-terrestrial subsurface ice. We describe the observed microphysical structure of ice responsible for these thermal properties, which displaces interstitial gases, traps bubbles, exhibits anisotropic growth, and bridges non-neighboring grains. We also consider the applicability of these measurements to subsurface ice on Mars and other solar system bodies

    A new sampling system tailored to experimentally-derived mechanical properties of icy analogs for evolved Enceladus surface plume deposits

    Get PDF
    Enceladus is unique amongst Ocean Worlds in our Solar System: the contents of its internal ocean are continuously emitted to space by its present-day activity, and some of these materials are redeposited on the surface. This tiny moon of Saturn thus presents an opportunity to directly measure the composition of the ocean and seek evidence for habitability (including past or extant life), either by collecting and analyzing plume particles as previously proposed by Discovery and New Frontiers mission concepts, or via more ambitious mission concepts that involve landing, surface sampling and analysis, and potential deployment of subsurface probes to reach the ocean itself (Hofgartner et al., this meeting). However, the low surface gravity (1% of Earth’s) and extreme cryogenic conditions in the South Pole regions (~ 50 K, away from the Tiger Stripes) raises questions: how to best sample the upper ~ 1 cm of the surface around a lander, made of most freshly deposited plume materials? What are the expected properties of these materials, i.e. how fast does sintering proceed and how strong would these materials be as function of their exposure age? We provide answers to these questions via a two-pronged approach. First, we surveyed experimentally the time evolution of mechanical strength of large samples of ice spherules at several temperatures. A custom sample preparation system has been developed to synthesize ice spheres with a grain size distribution of mean ~ 12 microns. The samples are subsequently held at temperatures of -30, -50, and -80 C, over extended periods of time (up to 9 months at time of writing), and their strength is tested at frequent intervals using cone penetration tests. The data obtained to date suggests that the observed temperature dependence of the strength evolution is commensurate with expectations from vapor diffusion. Second, we developed a new sampling system that enables rapid sampling and transfer of surface materials into receptacles. Those receptacles can then deposit the sampled materials into the inlet of an instrument dedicated to analyzing the chemical composition of these materials and seek tracers of past or extant life. The geometry of the system and principles of operation have been established and validated by experimental tests, as well as dynamical simulations

    The Dual-Rasp Sampling System for an Enceladus Lander

    Get PDF
    The Dual-Rasp sampling system has been developed for the unique sampling environment of a lander mission to the surface of Saturn's moon Enceladus. Plume material from the subsurface ocean that has fallen to the surface is desired resulting in an objective to sample the topmost layer of icy material. The low gravity and potential large range of surface properties are challenges for the sampling system. The Dual-Rasp sampling system has two counter-rotating rasp cutters with teeth that remove material that is thrown up between the cutters. Two prototypes of the Dual-Rasp sampling system were built and tested, one with a carousel and one that uses pneumatics for sample transfer

    Electron Irradiation and Thermal Processing of Mixed-ices of Potential Relevance to Jupiter Trojan Asteroids

    Get PDF
    In this work we explore the chemistry that occurs during the irradiation of ice mixtures on planetary surfaces, with the goal of linking the presence of specific chemical compounds to their formation locations in the solar system and subsequent processing by later migration inward. We focus on the outer solar system and the chemical differences for ice mixtures inside and outside the stability line for H_2S. We perform a set of experiments to explore the hypothesis advanced by Wong & Brown that links the color bimodality in Jupiter's Trojans to the presence of H_2S in the surface of their precursors. Non-thermal (10 keV electron irradiation) and thermally driven chemistry of CH_3OH–NH_3–H_2O ("without H_2S") and H_2S–CH_3OH–NH_3–H_2O ("with H_2S") ices were examined. Mid-IR analyses of ice and mass spectrometry monitoring of the volatiles released during heating show a rich chemistry in both of the ice mixtures. The "with H_2S" mixture experiment shows a rapid consumption of H_2S molecules and production of OCS molecules after a few hours of irradiation. The heating of the irradiated "with H_2S" mixture to temperatures above 120 K leads to the appearance of new infrared bands that we provisionally assign to SO_2 and CS. We show that radiolysis products are stable under the temperature and irradiation conditions of Jupiter Trojan asteroids. This makes them suitable target molecules for potential future missions as well as telescope observations with a high signal-to-noise ratio. We also suggest the consideration of sulfur chemistry in the theoretical modeling aimed at understanding the chemical composition of Trojans and KOBs

    Sample Handling and Instruments for the In-Situ Exploration of Ice-Rich Planets

    Get PDF
    NASA's key science goals for the exploration of the solar system seek a better understanding of the formation and evolutionary processes that have shaped planetary bodies and emphasize the search for habitable environments. Efforts are also made to detect and quantify resources that could be used for the support of human exploration. These themes call for chemistry and physical property observations that may be best approached by in situ measurements. NASA's planetary missions have progressively evolved from remote reconnaissance to in situ exploration with the ultimate goal to return samples. This chapter focuses on the techniques, available or in development, for advanced geophysical and chemical characterization of icy bodies, especially Mars polar areas, Enceladus, Titan, Europa, and Ceres. These astrobiological targets are the objects of recent or ongoing exploration whose findings are driving the formulation of new missions that involve in situ exploration. After reviewing the overall objectives of icy body exploration (Section 9.1) we describe key techniques used for addressing these objectives from surface platforms via geophysical observations (Section 9.2) and chemical measurements (Section 9.3)

    Complex organosulfur molecules on comet 67P: Evidence from the ROSINA measurements and insights from laboratory simulations.

    Get PDF
    The ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument aboard the Rosetta mission revolutionized our understanding of cometary material composition. One of Rosetta's key findings is the complexity of the composition of comet 67P/Churyumov-Gerasimenko. Here, we used ROSINA data to analyze dust particles that were volatilized during a dust event in September 2016 and report the detection of large organosulfur species and an increase in the abundances of sulfurous species previously detected in the coma. Our data support the presence of complex sulfur-bearing organics on the surface of the comet. In addition, we conducted laboratory simulations that show that this material may have formed from chemical reactions that were initiated by the irradiation of mixed ices containing H2S. Our findings highlight the importance of sulfur chemistry in cometary and precometary materials and the possibility of characterizing organosulfur materials in other comets and small icy bodies using the James Webb Space Telescope
    • …
    corecore