31 research outputs found

    Amyloid and tau pathology associations with personality traits, neuropsychiatric symptoms, and cognitive lifestyle in the preclinical phases of sporadic and autosomal dominant Alzheimer’s disease

    Get PDF
    Background Major prevention trials for Alzheimer’s disease (AD) are now focusing on multidomain lifestyle interventions. However, the exact combination of behavioral factors related to AD pathology remains unclear. In 2 cohorts of cognitively unimpaired individuals at risk of AD, we examined which combinations of personality traits, neuropsychiatric symptoms, and cognitive lifestyle (years of education or lifetime cognitive activity) related to the pathological hallmarks of AD, amyloid-β, and tau deposits. Methods A total of 115 older adults with a parental or multiple-sibling family history of sporadic AD (PREVENT-AD [PRe-symptomatic EValuation of Experimental or Novel Treatments for AD] cohort) underwent amyloid and tau positron emission tomography and answered several questionnaires related to behavioral attributes. Separately, we studied 117 mutation carriers from the DIAN (Dominant Inherited Alzheimer Network) study group cohort with amyloid positron emission tomography and behavioral data. Using partial least squares analysis, we identified latent variables relating amyloid or tau pathology with combinations of personality traits, neuropsychiatric symptoms, and cognitive lifestyle. Results In PREVENT-AD, lower neuroticism, neuropsychiatric burden, and higher education were associated with less amyloid deposition (p = .014). Lower neuroticism and neuropsychiatric features, along with higher measures of openness and extraversion, were related to less tau deposition (p = .006). In DIAN, lower neuropsychiatric burden and higher education were also associated with less amyloid (p = .005). The combination of these factors accounted for up to 14% of AD pathology. Conclusions In the preclinical phase of both sporadic and autosomal dominant AD, multiple behavioral features were associated with AD pathology. These results may suggest potential pathways by which multidomain interventions might help delay AD onset or progression

    Evidence for Hydroxyl Radical Generation During Lipid (Linoleate) Peroxidation

    No full text

    Photophysics of 7-mercapto-4-methylcoumarin and derivatives: complementary fluorescence behaviour to 7-hydroxycoumarins

    No full text
    The photophysical behaviour of 7-mercapto-4-methylcoumarin (C-SH) and derivatives has been studied in different solvents. In contrast to 7-hydroxy-4-methylcoumarin, C-SH shows poor emission, but high fluorescence when the thiol is alkylated. The origin and character of the lowest singlet states are discussed, specifically proposing that the thione-like C[double bond, length as m-dash]S resonance form plays a key role in excited state deactivation in C-SH

    Method to Predict Reagents in Iridium-Based Photoredox Catalysis

    No full text
    Visible-light photoredox catalysts with oxidizing excited states have been broadly applied in organic synthesis. Following photon absorption by the photocatalyst, electron transfer from an organic reagent is the most common mechanistic outcome for this class of reaction. Reduction potentials for organic reagents are therefore useful to predict reactivity and DFT proved to be useful as a predictive tool in this regard. Due to the complex mechanisms that follow electron transfer, kinetics play a crucial role in the success of photoredox reactions. We extend the predictive tools of DFT to estimate the electron transfer rates between an excited photocatalyst and various organic substrates. To calibrate our model, 49 electron transfer rate constants were experimentally measured in acetonitrile for the catalyst Ir[dF(CF3)ppy]2(dtbpy)+. The rate constants, kq, gave a clear predictive trend when compared to calculated ionization energies in “frozen solvent”, which was a better predictor than standard reduction potentials in our case. The calculated kq gave an average error of 17% for log(kq) values between 4 and 11. This simple method can predict the reactivity of hundreds of reagents in silico. Notably, the calculations offered unexpected insight that we could translate into success for the C-H activation of acetylacetone as a proof-of-concept

    Highly Photostable and Fluorescent Microporous Solids Prepared via Solid-State Entrapment of Boron Dipyrromethene Dyes in a Nascent Metal–Organic Framework

    No full text
    We report a strategy to synthesize highly emissive, photostable, microporous materials by solid-state entrapment of boron dipyrromethene (BODIPY) fluorophores in a metal–organic framework. Solvent-free mechanochemistry or accelerated aging enabled quantitative capture and dispersal of the PM605 dye within the ZIF-8 framework starting from inexpensive, commercial materials. While the design of emissive BODIPY solids is normally challenged by quenching in a densely packed environment, herein reported PM605@ZIF-8 materials show excellent emissive properties and to the best of our knowledge an unprecedented ∼10-fold enhancement of BODIPY photostability. Time-resolved and steady-state fluorescence studies of PM605@ZIF-8 show that interchromophore interactions are minimal at low dye loadings, but at higher ones lead to through-pore energy transfer between chromophores and to aggregate species.Fil: Glembockyte, Viktorija. McGill University; CanadáFil: Frenette, Mathieu. Mcgill University; Canadá. Université du Québec a Montreal; CanadáFil: Mottillo, Cristina. Mcgill University; CanadáFil: Durantini, Andres Matías. Mcgill University; Canadá. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Química; Argentina. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; ArgentinaFil: Gostick, Jeff. Mcgill University; CanadáFil: Strukil, Vjekoslav. Mcgill University; Canadá. Ruđer Bošković Institute; CroaciaFil: Friščić, Tomislav. Mcgill University; Canadá. Ruđer Bošković Institute; CroaciaFil: Cosa, Gonzalo. Mcgill University; Canad

    Mechanistic Evidence for a Radical-Radical Recombination Pathway of Flavin-based Photocatalytic Tyrosine Labeling

    No full text
    We recently introduced flavin-based photocatalysts such as riboflavin tetraacetate (RFT) as a robust platform for light- mediated protein labeling via phenoxyl radical-mediated tyrosine-biotin phenol coupling on live cells. To gain insight into this coupling reaction, we conducted detailed mechanistic analysis for RFT-photomediated activation of phenols for tyrosine labeling. Contrary to previously proposed mechanisms, we find that the initial covalent binding step between the tag and tyrosine is not radical addition, but rather radical-radical recombination. Radical addition to a phenol, while often proposed in the literature, is prohibitively unfavorable according to DFT calculations. Radical-radical recombination, followed by rearomatization, is the preferred pathway for the phenol-phenol coupling presented herein, but may also explain the mechanism of other tyrosine-tagging approaches described in the literature. Competitive kinetics experiments show that phenoxyl radicals are generated by the reaction of phenols with several reactive intermediates in the proposed mechanism: primarily with the riboflavin-photocatalyst excited state or singlet oxygen, but also possibly with the semi-reduced photocatalyst or hydroperoxyl radicals produced at key steps in the mechanism
    corecore