72 research outputs found
Quantitative analysis of methodological and environmental influences on survival of planted mangroves in restoration and afforestation
Mangrove planting has been employed for decades to achieve aims associated with restoration and afforestation. Often, survival of planted mangroves is low. Improving survival might be aided by augmenting the understanding of which planting methods and environmental variables most influence plant survival across a range of contexts. The aim of this study was to provide a global synthesis of the influence of planting methods and background environment on mangrove survival. This was achieved through a global meta-analysis, which compiled published survival rates for the period 1979–2021 and analyzed the influence of decisions about minimum spacing and which life stage to plant, and environmental contexts such as climate, tidal range and coastal setting on the reported survival of planted individuals, classified by species and root morphology. Generalized Additive Mixed Modeling (GAMM) revealed that planting larger mangrove saplings was associated with increased survival for pencil-rooted species such as Avicennia spp. and Sonneratia spp. (17% increase cf. seedlings), while greater plant spacing was associated with higher survival of stilt-rooted species in the family Rhizophoraceae (39% increase when doubling plant spacing from 1.5 to 3.0 m). Tidal range showed a nonlinear positive correlation with survival for pencil-rooted species, and the coastal environmental setting was associated with significant variation in survival for both pencil-and stilt-rooted species. The results suggest that improving decisions about which species to plant in different contexts, and intensive care after planting, is likely to improve the survival of planted mangroves
Gradients in the Number of Species at Reef-Seagrass Ecotones Explained by Gradients in Abundance
Gradients in the composition and diversity (e.g. number of species) of faunal assemblages are common at ecotones between juxtaposed habitats. Patterns in the number of species, however, can be confounded by patterns in abundance of individuals, because more species tend to be found wherever there are more individuals. We tested whether proximity to reefs influenced patterns in the composition and diversity (‘species density’ = number of species per area and ‘species richness’ = number of species per number of individuals) of prosobranch gastropods in meadows of two seagrasses with different physiognomy: Posidonia and Amphibolis. A change in the species composition was observed from reef-seagrass edges towards the interiors of Amphibolis, but not in Posidonia meadows. Similarly, the abundance of gastropods and species density was higher at edges relative to interiors of Amphibolis meadows, but not in Posidonia meadows. However, species richness was not affected by proximity to reefs in either type of seagrass meadow. The higher number of species at the reef-Amphibolis edge was therefore a consequence of higher abundance, rather than species richness per se. These results suggest that patterns in the composition and diversity of fauna with proximity to adjacent habitats, and the underlying processes that they reflect, likely depend on the physiognomy of the habitat
Using Propagules to Restore Coastal Marine Ecosystems
publishedVersio
Carbon sequestration and climate change mitigation using macroalgae: a state of knowledge review
The conservation, restoration, and improved management of terrestrial forests significantly contributes to mitigate climate change and its impacts, as well as providing numerous co-benefits. The pressing need to reduce emissions and increase carbon removal from the atmosphere is now also leading to the development of natural climate solutions in the ocean. Interest in the carbon sequestration potential of underwater macroalgal forests is growing rapidly among policy, conservation, and corporate sectors. Yet, our understanding of whether carbon sequestration from macroalgal forests can lead to tangible climate change mitigation remains severely limited, hampering their inclusion in international policy or carbon finance frameworks. Here, we examine the results of over 180 publications to synthesise evidence regarding macroalgal forest carbon sequestration potential. We show that research efforts on macroalgae carbon sequestration are heavily skewed towards particulate organic carbon (POC) pathways (77% of data publications), and that carbon fixation is the most studied flux (55%). Fluxes leading directly to carbon sequestration (e.g. carbon export or burial in marine sediments) remain poorly resolved, likely hindering regional or country-level assessments of carbon sequestration potential, which are only available from 17 of the 150 countries where macroalgal forests occur. To solve this issue, we present a framework to categorize coastlines according to their carbon sequestration potential. Finally, we review the multiple avenues through which this sequestration can translate into climate change mitigation capacity, which largely depends on whether management interventions can increase carbon removal above a natural baseline or avoid further carbon emissions. We find that conservation, restoration and afforestation interventions on macroalgal forests can potentially lead to carbon removal in the order of 10's of Tg C globally. Although this is lower than current estimates of natural sequestration value of all macroalgal habitats (61–268 Tg C year−1), it suggests that macroalgal forests could add to the total mitigation potential of coastal blue carbon ecosystems, and offer valuable mitigation opportunities in polar and temperate areas where blue carbon mitigation is currently low. Operationalizing that potential will necessitate the development of models that reliably estimate the proportion of production sequestered, improvements in macroalgae carbon fingerprinting techniques, and a rethinking of carbon accounting methodologies. The ocean provides major opportunities to mitigate and adapt to climate change, and the largest coastal vegetated habitat on Earth should not be ignored simply because it does not fit into existing frameworks.publishedVersio
Positive ecological interactions and the success of seagrass restoration
Seagrasses provide multiple ecosystem services including nursery habitat, improved water quality, coastal protection, and carbon sequestration. However, seagrasses are in crisis as global coverage is declining at an accelerating rate. With increased focus on ecological restoration as a conservation strategy, methods that enhance restoration success need to be explored. Decades of work in coastal plant ecosystems, including seagrasses, has shown that positive species relationships and feedbacks are critical for ecosystem stability, expansion, and recovery from disturbance. We reviewed the restoration literature on seagrasses and found few studies have tested for the beneficial effects of including positive species interactions in seagrass restoration designs. Here we review the full suite of positive species interactions that have been documented in seagrass ecosystems, where they occur, and how they might be integrated into seagrass restoration. The few studies in marine plant communities that have explicitly incorporated positive species interactions and feedbacks have found an increase in plant growth with little additional resource investment. As oceans continue to change and stressors become more prevalent, harnessing positive interactions between species through innovative approaches will likely become key to successful seagrass restoration
Positive Ecological Interactions and the Success of Seagrass Restoration
Seagrasses provide multiple ecosystem services including nursery habitat, improved water quality, coastal protection, and carbon sequestration. However, seagrasses are in crisis as global coverage is declining at an accelerating rate. With increased focus on ecological restoration as a conservation strategy, methods that enhance restoration success need to be explored. Decades of work in coastal plant ecosystems, including seagrasses, has shown that positive species relationships and feedbacks are critical for ecosystem stability, expansion, and recovery from disturbance. We reviewed the restoration literature on seagrasses and found few studies have tested for the beneficial effects of including positive species interactions in seagrass restoration designs. Here we review the full suite of positive species interactions that have been documented in seagrass ecosystems, where they occur, and how they might be integrated into seagrass restoration. The few studies in marine plant communities that have explicitly incorporated positive species interactions and feedbacks have found an increase in plant growth with little additional resource investment. As oceans continue to change and stressors become more prevalent, harnessing positive interactions between species through innovative approaches will likely become key to successful seagrass restoration
Global patterns in the impact of marine herbivores on benthic primary producers
Despite the importance of consumers in structuring communities, and the widespread assumption that consumption is strongest at low latitudes, empirical tests for global scale patterns in the magnitude of consumer impacts are limited. In marine systems, the long tradition of experimentally excluding herbivores in their natural environments allows consumer impacts to be quantified on global scales using consistent methodology. We present a quantitative synthesis of 613 marine herbivore exclusion experiments to test the influence of consumer traits, producer traits and the environment on the strength of herbivore impacts on benthic producers. Across the globe, marine herbivores profoundly reduced producer abundance (by 68% on average), with strongest effects in rocky intertidal habitats and the weakest effects on habitats dominated by vascular plants. Unexpectedly, we found little or no influence of latitude or mean annual water temperature. Instead, herbivore impacts differed most consistently among producer taxonomic and morphological groups. Our results show that grazing impacts on plant abundance are better predicted by producer traits than by large‐scale variation in habitat or mean temperature, and that there is a previously unrecognised degree of phylogenetic conservatism in producer susceptibility to consumption
Accelerating tropicalization and the transformation of temperate seagrass meadows
Climate-driven changes are altering production and functioning of biotic assemblages in terrestrial and aquatic environments. In temperate coastal waters, rising sea temperatures, warm water anomalies and poleward shifts in the distribution of tropical herbivores have had a detrimental effect on algal forests. We develop generalized scenarios of this form of tropicalization and its potential effects on the structure and functioning of globally significant and threatened seagrass ecosystems, through poleward shifts in tropical seagrasses and herbivores. Initially, we expect tropical herbivorous fishes to establish in temperate seagrass meadows, followed later by megafauna. Tropical seagrasses are likely to establish later, delayed by more limited dispersal abilities. Ultimately, food webs are likely to shift from primarily seagrass-detritus to more directconsumption- based systems, thereby affecting a range of important ecosystem services that seagrasses provide, including their nursery habitat role for fishery species, carbon sequestration, and the provision of organic matter to other ecosystems in temperate regions
The oceanography and marine ecology of Ningaloo, a world heritage area
The Ningaloo coast of north-western Australia (eastern Indian Ocean) hosts one of the world’s longest and most extensive fringing coral reef systems, along with globally significant abundances of large marine fauna such as whale sharks. These characteristics – which have contributed to its inscription on the World Heritage list – exist because of the unique climatic, geomorphologic and oceanographic conditions. The region is hot and arid, so runoff of water from land is low, facilitating clear water that allows corals to grow close to the shore. The poleward-flowing Leeuwin Current is an important influence, bringing warm water and generally suppressing coastal upwelling. During the austral summer, strong southerly winds generate the equatorward-flowing Ningaloo Current on the inner shelf – this current facilitates sporadic upwelling events that enhance concentrations of nutrients, which in turn enhance pelagic primary productivity that supports the reef’s biota. The coast has experienced several marine heatwaves since 2011 that have caused mortality of corals and probably seagrass, albeit relatively less than elsewhere along the coast. Wind-generated surface waves break over the fringing reef crest, causing cooling currents that tend to dampen warming – although this mechanism seems not to have prevented some areas from experiencing damaging heat, and corals in places that do not receive the wave-generated currents have experienced substantial mortality. Herbivores, from fish to green turtles, are abundant, and in the lagoon, extensive stands of large brown algae provide an important habitat for newly recruited fish. There has been a decline in abundance of some fish. Predictions of future pressures include a weaker but more variable Leeuwin Current and increased human use. The ability of Ningaloo’s ecosystems to withstand growing pressures will depend partly on the rate and magnitude of global warming but also on actions that manage local pressures from increasing human use. These actions will rely on continued science to provide the evidence needed to identify the pressures, the changes they create and the ways that we can mitigate them
Chapter 4 The Oceanography and Marine Ecology of Ningaloo, A World Heritage Area
The Ningaloo coast of north-western Australia (eastern Indian Ocean) hosts one of the world’s longest and most extensive fringing coral reef systems, along with globally-significant abundances of large marine fauna such as whale sharks. These characteristics — which have contributed to its inscription on the World Heritage list — exist because of the unique climatic, geomorphologic and oceanographic conditions. The region is hot and arid, so runoff of water from land is low, facilitating clear water that allows corals to grow close to the shore. The poleward-flowing Leeuwin Current is an important influence, bringing warm water and generally suppressing coastal upwelling. During the austral summer, strong southerly winds generate the equatorward-flowing Ningaloo Current on the inner shelf — this current facilitates sporadic upwelling events that enhance concentrations of nutrients, which in turn enhances pelagic primary productivity that supports the reef’s biota. The coast has experienced several marine heatwaves since 2011 that have caused mortality of corals, and probably seagrass, albeit relatively less than elsewhere along the coast. Wind-generated surface waves break over the fringing reef crest, causing cooling currents that tend to dampen warming — although this mechanism seems not to have prevented some areas from experiencing damaging heat, and corals in places that do not experience the wave-generated currents have experienced substantial mortality. Herbivores, from fish to green turtles, are abundant, and in the lagoon extensive stands of large brown algae provide an important habitat for newly-recruited fish. There has been a decline in abundance of some fish. Predictions of future pressures include a weaker but more variable Leeuwin Current, and increased human use. The ability of Ningaloo’s ecosystems to withstand growing pressures will depend partly on the rate and magnitude of global warming, but also on actions that manage local pressures from increasing human use. These actions will rely on continued science to provide the evidence needed to identify the pressures, the changes they create and the ways that we can mitigate them
- …