451 research outputs found

    Mapping vulnerable urban areas affected by slow-moving landslides using Sentinel-1InSAR data

    Get PDF
    Landslides are widespread natural hazards that generate considerable damage and economic losses worldwide. Detecting terrain movements caused by these phenomena and characterizing affected urban areas is critical to reduce their impact. Here we present a fast and simple methodology to create maps of vulnerable buildings affected by slow-moving landslides, based on two parameters: (1) the deformation rate associated to each building, measured from Sentinel-1 SAR data, and (2) the building damage generated by the landslide movement and recorded during a field campaign. We apply this method to Arcos de la Frontera, a monumental town in South Spain affected by a slow-moving landslide that has caused severe damage to buildings, forcing the evacuation of some of them. Our results show that maximum deformation rates of 4 cm/year in the line-of-sight (LOS) of the satellite, affects La Verbena, a newly-developed area, and displacements are mostly horizontal, as expected for a planar-landslide. Our building damage assessment reveals that most of the building blocks in La Verbena present moderate to severe damages. According to our vulnerability scale, 93% of the building blocks analysed present high vulnerability and, thus, should be the focus of more in-depth local studies to evaluate the serviceability of buildings, prior to adopting the necessary mitigation measures to reduce or cope with the negative consequences of this landslide. This methodology can be applied to slow-moving landslides worldwide thanks to the global availability of Sentinel-1 SAR data.Postprint (published version

    Students’ satisfaction towards the use of QR codes for dance learning in Physical Education

    Get PDF
    Information and communication technologies (ICT) are present in education. There are different ways of classifying the different tools. QR codes allow to connect real objects with any additional web content. Through these codes, movements and dances can be visualized. Thus, they have been applied in Physical Education classes, being scarce the studies of their application for dance and corporal expression activities. That is why this work aims to analyze the fun and enjoyment of students towards the use of QR codes for dance learning. The study was carried out with a sample of 30 vocational training in Physical Education students with a quasi-experimental design, using a pretest and a post-test. The conclusions determine that fun and enjoyment in Physical Education classes increased when students used the QR codes to learn the dances without observing statistically significant differences. As future lines of research, it would be interesting to extend the intervention with a larger number of sessions.Las tecnologías de la información y la comunicación (TIC) están presente en la Educación. Existen diferentes formas de clasificación de las diferentes herramientas. Los códigos QR permiten conectar objetos reales con cualquier contenido web adicional. A través de estos códigos se pueden visualizar movimientos y danzas. Así, se han aplicado en las clases de Educación Física, siendo escasos los estudios de su aplicación para actividades de danza y expresión corporal. Es por ello, que este trabajo pretende analizar la diversión y disfrute del alumnado hacia el uso de los códigos QR para el aprendizaje de la danza. El estudio se llevó a cabo con una muestra de 30 estudiantes de un Grado Superior de Formación Profesional del ámbito de la Educación Física con un diseño cuasi-experimental, utilizando un pretest y un postest. Las conclusiones determinan que la diversión y el disfrute en las clases de Educación Física aumentaron cuando el alumnado utilizó los códigos QR para aprender las danzas sin observarse diferencias estadísticamente significativas. Como futuras líneas de investigación sería interesante ampliar la intervención con un número mayor de sesiones

    Monitoring Lipase/Esterase Activity by Stopped Flow in a Sequential Injection Analysis System Using p-Nitrophenyl Butyrate

    Get PDF
    Lipases and esterases are biocatalysts used at the laboratory and industrial level.To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05-1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed

    Structure and luminescence properties of Dy3+^{3+} doped quaternary tungstate Li3_3Ba2_2Gd3_3(WO4_4)8_8 for application in wLEDs

    Get PDF
    Quaternary tungstates with the composition Li3_3Ba2_2Gd3_3(WO4_4)8_8 doped with different concentrations of Dy3+^{3+} (from 0.5 to 10 at%) were prepared by the solid-state reaction method at 900 °C. Their structural, spectroscopic and optical properties were studied systematically in this work. X-ray diffraction analysis confirmed the crystallization of Li3_3Ba2_2Gd3_3(WO4_4)8_8 to have a monoclinic structure (sp. gr. C2/c); the lattice constants for 1 at% doping concentration of Dy3+^{3+} are a = 5.2126(2) Å, b = 12.7382(1) Å, c = 19.1884(3) Å, Vcalc_{calc} = 1273,40(4) Å3^3 and β = a × c = 91.890(9)°. The first principles calculations for the undoped crystal revealed a direct bandgap of 2.45 eV, which is very close to the experimental one. The identified broad, and strong excitation peak at 450 nm indicates that Li3_3Ba2_2Gd3_3(WO4_4)8_8:Dy3+^{3+} phosphors are suitable to be pumped by a blue laser diode (LD). Under excitation at 445 nm, the phosphor showed a stronger luminescence peak at 575 nm which corresponds to the Dy3+^{3+}:4F9/2_{9/2}6^6H13/2_{13/2} transition, and three weaker emissions peaks at 477, 661, and 750 nm. Meanwhile, the effect of different Dy3+^{3+} contents on the luminescence properties was investigated. The optimum concentration to minimize the quenching effect was 4 at% and the critical distance is 31.209 Å. The phosphor emitted strong greenish-yellow light situated at (0.425, 0.472) in CIE coordinates with a color temperature of 3652 K. All the measured luminescence lifetime curves exhibited a single-exponential nature. Excellent thermal stability was found for this tungstate phosphor (the activation energy is 0.352 ± 0.01 eV). The measured absolute photoluminescence quantum yield was around 10.5%. The results presented in this work show that Li3_3Ba2_2Gd3_3(WO4_4)8_8:Dy3+^{3+} phosphors with strong yellow emission are promising candidates for white-light emitting LED (wLED) applications

    Transcriptomic Evidence of the Immune Response Activation in Individuals With Limb Girdle Muscular Dystrophy Dominant 2 (LGMDD2) Contributes to Resistance to HIV-1 Infection

    Get PDF
    LGMDD2 is a rare form of muscular dystrophy characterized by one of the three heterozygous deletions described within the TNPO3 gene that result in the addition of a 15-amino acid tail in the C-terminus.TNPO3 is involved in the nuclear import of splicing factors and acts as a host cofactor for HIV-1 infection by mechanisms not yet deciphered. Further characterization of the crosstalk between HIV-1 infection and LGMDD2 disease may contribute to a better understanding of both the cellular alterations occurring in LGMDD2 patients and the role of TNPO3 in the HIV-1 cycle. To this regard, transcriptome profiling of PBMCs from LGMDD2 patients carrying the deletion c.2771delA in the TNPO3 gene was compared to healthy controls. A total of 545 differentially expressed genes were detected between LGMDD2 patients and healthy controls, with a high representation of G protein-coupled receptor binding chemokines and metallopeptidases among the most upregulated genes in LGMDD2 patients. Plasma levels of IFN-β and IFN-γ were 4.7- and 2.7-fold higher in LGMDD2 patients, respectively. An increase of 2.3-fold in the expression of the interferon-stimulated gene MxA was observed in activated PBMCs from LGMDD2 patients after ex vivo HIV-1 pseudovirus infection. Thus, the analysis suggests a pro-inflammatory state in LGMDD2 patients also described for other muscular dystrophies, that is characterized by the alteration of IL-17 signaling pathway and the consequent increase of metallopeptidases activity and TNF response. In summary, the increase in interferons and inflammatory mediators suggests an antiviral environment and resistance to HIV-1 infection but that could also impair muscular function in LGMDD2 patients, worsening disease evolution. Biomarkers of disease progression and therapeutic strategies based on these genes and mechanisms should be further investigated for this type of muscular dystrophy.This study was funded by Asociación Conquistando Escalones, French Agency for Research on AIDS and Viral Hepatitis (ANRS grant ECTZ107263), Instituto de Salud Carlos III (PI19CIII/00004), NIH grant R01AI143567, the Spanish Ministry of Science and Innovation (PID2019-110275RB I00) and Fundación Isabel Gemio. It has been conducted within the Spanish AIDS Research Network (RIS) and Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, funded by Instituto de Salud Carlos 640 III (Plan Estatal de I+D+I 2013-2016) and co-funded by European Regional Development Fund (ERDF) “A way to build Europe” (RD16CIII/0002/0001).S

    SINGLE-CELL sequencing workflow to study cellular composition and cell type specific expression profiles of human Cerebral Organoids

    Get PDF
    IBRO 11th World Congress of Neuroscience. Granada (Spain). 9-13 September 2023.Human cerebral organoid culture is a technology with immense potential in the areas of developmental neurobiology and neurodegeneration for example to study cell types, mechanisms involved, to discover of new biomarkers, to propose specific therapeutic strategies or to study the effects of compound-induced toxicity. Single-cell RNA sequencing (scRNA-seq) is a promising technology that will help to define the identity of the cerebral organoids and to understand cellular composition and cell type specific expression profiles. Standardization of workflows to do the scRNA-seq analysis is an important means to improve the use of this technology. We present the workflow and results of the scRNA-seq performed for cerebral organoids generated from the AND-2 cell line of human embryonic stem cells (hESCs). Dissociated cerebral organoid samples were loaded on the 10X Chromium and single cell libraries were prepared according to 10X Genomics standard procedures and sequenced on the Novaseq sequencer (Illumina).The data were checked and aligned to the GRCh38 human reference genome with CellRanger v6.0.2 and analyzed with Seurat v4.0. After quality filtering and data normalization with the SCTransform function, we performed Principal component analysis (PCA) using the highly variable genes, built a Shared Nearest Neighbor (SNN) graph using the Louvain method. To visualize data, Uniform Manifold Approximation and Projection (UMAP) dimensional reduction was performed. The identities of the cell clusters were assigned using the expression of genes specific of each cell type. We annotate in the AND2 cerebral organoids clusters for intermediate progenitor cells, astrocytes, oligodendrocyte precursor cells, excitatory neurons, inhibitory neurons, and mesodermal cells. We find also some cells in these organoids with expression of endothelial and microglial gene markers. Enrichment analysis of the highly variable differentially expressed genes (DEGs) was utilized to characterize the assigned cell types with Gene Ontology (GO), PanglaoDB and Cellmarker databases.S

    Persistent Overactive Cytotoxic Immune Response in a Spanish Cohort of Individuals With Long-COVID: Identification of Diagnostic Biomarkers

    Get PDF
    Long-COVID is a new emerging syndrome worldwide that is characterized by the persistence of unresolved signs and symptoms of COVID-19 more than 4 weeks after the infection and even after more than 12 weeks. The underlying mechanisms for Long-COVID are still undefined, but a sustained inflammatory response caused by the persistence of SARS-CoV-2 in organ and tissue sanctuaries or resemblance with an autoimmune disease are within the most considered hypotheses. In this study, we analyzed the usefulness of several demographic, clinical, and immunological parameters as diagnostic biomarkers of Long-COVID in one cohort of Spanish individuals who presented signs and symptoms of this syndrome after 49 weeks post-infection, in comparison with individuals who recovered completely in the first 12 weeks after the infection. We determined that individuals with Long-COVID showed significantly increased levels of functional memory cells with high antiviral cytotoxic activity such as CD8+ TEMRA cells, CD8±TCRγδ+ cells, and NK cells with CD56+CD57+NKG2C+ phenotype. The persistence of these long-lasting cytotoxic populations was supported by enhanced levels of CD4+ Tregs and the expression of the exhaustion marker PD-1 on the surface of CD3+ T lymphocytes. With the use of these immune parameters and significant clinical features such as lethargy, pleuritic chest pain, and dermatological injuries, as well as demographic factors such as female gender and O+ blood type, a Random Forest algorithm predicted the assignment of the participants in the Long-COVID group with 100% accuracy. The definition of the most accurate diagnostic biomarkers could be helpful to detect the development of Long-COVID and to improve the clinical management of these patients.This work was supported by the Coordinated Research Activities at the National Center of Microbiology (CNM, Instituto de Salud Carlos III) (COV20_00679) to promote an integrated response against SARS-CoV-2 in Spain (Spanish Ministry of Science and Innovation), which is coordinated by Dr Inmaculada Casas (WHO National Influenza Center of the CNM); a generous donation provided by Chiesi España, S.A.U. (Barcelona, Spain); the Spanish Ministry of Science and Innovation (PID2019-110275RB-I00); and the Spanish AIDS Research Network RD16CIII/0002/0001 that is included in Acción Estratégica en Salud, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica 2016-2020, Instituto de Salud Carlos III, European Region Development Fund (ERDF). The work of ML-H and SR-M is financed by NIH grant R01AI143567. The work of MT is supported by Instituto de Salud Carlos III (COV20_00679). The work of LV is supported by a pre-doctoral grant from Instituto de Salud Carlos III (FIS PI16CIII/00034-ISCIII-FEDER). The work of FR-M is financed by the Spanish Ministry of Science and Innovation (PID2019-110275RB-I00).S

    The mutation of Transportin 3 gene that causes limb girdle muscular dystrophy 1F induces protection against HIV-1 infection

    Get PDF
    The causative mutation responsible for limb girdle muscular dystrophy 1F (LGMD1F) is one heterozygous single nucleotide deletion in the stop codon of the nuclear import factor Transportin 3 gene (TNPO3). This mutation causes a carboxy-terminal extension of 15 amino acids, producing a protein of unknown function (TNPO3_mut) that is co-expressed with wild-type TNPO3 (TNPO3_wt). TNPO3 has been involved in the nuclear transport of serine/arginine-rich proteins such as splicing factors and also in HIV-1 infection through interaction with the viral integrase and capsid. We analyzed the effect of TNPO3_mut on HIV-1 infection using PBMCs from patients with LGMD1F infected ex vivo. HIV-1 infection was drastically impaired in these cells and viral integration was reduced 16-fold. No significant effects on viral reverse transcription and episomal 2-LTR circles were observed suggesting that the integration of HIV-1 genome was restricted. This is the second genetic defect described after CCR5Δ32 that shows strong resistance against HIV-1 infection.This work was supported by crowfunding site PRECIPITA from FECYT, the MERCKSALUD Foundation, the Spanish Ministry of Science (FIS PI12/00969; PI16CIII/00034; SAF2016-78480-R); the Spanish AIDS Research Network RD16CIII/0002/0001 that is included in Acción Estratégica en Salud, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica 2016-2020, Instituto de Salud Carlos III, European Region Development Fund (FEDER); CIBERer-ISCIII (FIS PI16/00316) co-financed by the European Regional Development Founds (FEDER), IIS La Fe (2016-0388; 2018-0200), and Fundación Isabel Gemio (http://www.fundacionisabelgemio.com). The work of Dra. Sara Rodríguez-Mora is supported by the Asociación Conquistando Escalones, funded by Spanish LGMD1F patients and Sara Borrell grant from Instituto de Salud Carlos III. The work of Dra. María Rosa López-Huertas is financed by ISCIII-Subdirección General de Evaluación and European Funding for Regional Development (FEDER) and by Spanish Ministry of Economy and Competitiveness (PIE13/00040). The work of Elena Mateos is supported by the Spanish Ministry of Economy and Competitiveness SAF2016-78480-R. The work of Lorena Vigón is supported by a pre-doctoral grant from Instituto de Salud Carlos III. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.S
    corecore