58 research outputs found

    Soil suction

    Get PDF
    Suction is pore water pressure in unsaturated soils and influences other soil characteristics.\ud Suction measurements for 4 different soils (bentonite, stone flour, gray clay “sivica” and\ud brown clay “flysch”) are presented. Measurements were performed on compacted and loose\ud material at different water contents using 4 different methods: WP4 dewpoint potentiometer,\ud filter paper, tenziometer and pressure plate apparatus. Additionally the water adsorption was\ud determined for loose materials. Results were interpreted using 4 models describing SWCC.\ud To describe the practical use of soil suction in geotechnical engineering the oedometer test of\ud “sivica” clay with wetting of the sample. For the given case the time relation of heaving was\ud compared to the calculated heave

    Liquefaction potential of sands at the Krško-Brežice field, Slovenia

    Get PDF
    The Krško-Brežice field is one of the most seismically active areas in Slovenia. The most damaging recorded earthquake with an intensity of VIII (EMS) occurred on 29th January 1917. It caused damage and claimed two lives. In the last 100 years, 9 earthquakes with intensity higher than VI (EMS) have been recorded. At the investigated area, a top layer up to 5 m thick, consisting of recent deposit of very loose silts and sands (ML, SM, SP), covers the medium dense to dense Quaternary gravel, beneath which there are over-consolidated, uncemented Miocene silts and marls. The top layer could be prone to liquefaction, as reported for the close surroundings of Brežice, where the liquefaction phenomenon was observed during the Zagreb earthquake in 1880 and during the Kupa Valley earthquake in 1909. The paper presents the results of laboratory index tests, cyclic simple shear tests and field investigations (SPT, CPT, (S)DMT, vs measurements), which were carried out to assess the liquefaction potential of the top layer at the location of the Brežice Hydroelectric Power Plant (HPP). All results show that the top layer is prone to liquefaction for an earthquake with a 475 year return period. Cyclic simple shear test results show that the liquefaction potential of horizontal ground for an earthquake with a 475 year return period can be reduced by the densification of the top layer to at least 95% of maximum Proctor density.</p

    Soil-Water Characteristic Curve of Residual Soil from a Flysch Rock Mass

    Get PDF
    Depending on the nature of the material and suction range, laboratory measurements of the soil-water characteristic curve (SWCC) can be time-consuming and expensive, especially for residual soils, in which a wide range of particle sizes and soil structures typically results in SWCCs that cover a wide range of suction. Investigations of the SWCCs of residual soil from flysch rock masses are rare, and so far, no results were presented in the literature which were obtained by performing measurements on undisturbed specimens. In this paper, a detailed examination of water retention characteristics is performed for a specific type of residual soil (CL) formed by the weathering of a flysch rock mass. Measurements performed by using different techniques and devices on intact specimens were successfully combined to obtain the SWCC during both drying and wetting processes, under different stress conditions, and from saturated to air-dried conditions. Used procedures are suitable for the determination of SWCCs of soils that undergo volume changes during the drying or the wetting process, since instantaneous volumetric water content can be determined. Results presented in this paper can be used to assess the influence of desaturation of the residual soil covering flysch slopes during dry summer periods by providing key-in material properties required to analyze the transient rainfall infiltration process

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    corecore