2 research outputs found

    The Advantages of Using Multiplex PCR for the Simultaneous Detection of Six Sexually Transmitted Diseases

    Get PDF
    Sexually transmitted diseases (STDs) are among the most common infections. Their clinical identification is difficult because STDs are often asymptomatic. Untreated infections with these pathogens can in time lead to serious consequences. It is documented that isolation of some of these bacteria from cultures is very difficult. Because there is a large number of STD pathogens which can generate coinfections, their simultaneous detection in a unique sample is very important. Multiplex polymerase chain reaction (PCR) is an advanced method of molecular biology which allows for simultaneous detection of multiple pathogens in the same sample. The advantages of the multiplex PCR method were assessed by various researchers by comparing the diagnosis results obtained with different other conventional methods. The sensitivity and specificity of these methods were analyzed on different specimens in comparison to traditional methods, such as culture media or direct microscopic examination. These studies demonstrated beyond any doubt that the multiplex PCR system is highly effective in the detection of each of multiple STD pathogens depicted from a single specimen and argued for multiplex PCR superiority in terms of sensitivity and rapidity

    Physico-chemical characterization and antibacterial activity of different types of honey tested on strains isolated from hospitalized patients

    No full text
    The first aim of the study was to compare the antibacterial activity of several types of honey of different origins, against some bacterial resistant strains. The strains had been isolated from patients. The second aim was to discover the correlations between the antibacterial character of honey and the physico-chemical properties of the honey. Ten honey samples (polyfloral, linden, acacia, manna, and sunflower) from the centre of Romania were tested to determine their antibacterial properties against the following bacterial species: Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella enterica serovar Typhimurium, Bacillus cereus, Bacillus subtilis, and Listeria monocytogenes. Bacterial cultures in nutrient broth and the culture medium Mueller-Hinton agar were used. The susceptibility to antibiotics was performed using the disk diffusion method. All honey samples showed antibacterial activity on the isolated bacterial strains, in particular polyfloral (inhibition zone 13-21 mm in diameter) - because it is the source of several plants, and manna (inhibition zone 13-19.5 mm in diameter), and sunflower (inhibition zone 14-18.5 mm in diameter). Pure honey has a significant antibacterial activity against some bacteria which are resistant to antibiotics. Bacterial strains differed in their sensitivity to honeys. Pseudomonas aeruginosa and Staphylococcus aureus were the most sensitive. The present study revealed that honey antibacterial activity depends on the origin of the honey. We also found that there was a significant correlation between antibacterial activity of honeys and the colour of the honey but not between acidity and pH. The statistical analysis showed that the honey type influences the antibacterial activity (diameter of the bacterial strains inhibition zones)
    corecore