152 research outputs found
Effects of estradiol on very low density lipoprotein receptor mRNA levels in rabbit heart
AbstractThe VLDL receptor, a newly identified lipoprotein receptor, has a domain structure homologous with the LDL receptor but has one additional cysteine rich repeat in the ligand binding domain. To study the regulation of the VLDL receptor in vivo, we administered 17 α-ethinyl estradiol to rabbits and examined its effects on VLDL receptor mRNA levels in the heart, one of the organs with highly expressed VLDL receptors, by RNA blotting. The ventricular level of VLDL receptor mRNA increased dramatically after estradiol administration. We could not detect VLDL receptor mRNA in the liver even after estradiol administration. We have confirmed the enhanced expression of liver LDL receptor mRNA by estradiol, however, only weak expression of the LDL receptor was detected in the ventricle of the rabbit heart. These results suggest that estradiol exerts its effect on the VLDL receptor gene expression in the heart
Impact of individual metabolic risk components or its clustering on endothelial and smooth muscle cell function in men
Background: Impaired vasoreactivity is often observed in subjects with metabolic syndrome, a condition that includes the presence of a specific cluster of risk factors for obesity and cardiovascular disease. However, hierarchical causes in the impaired vasoreactivity have not been clarified. We evaluated the impact of individual metabolic risk components or its clustering under the condition of insulin resistance on endothelial and smooth muscle cell function.
Methods: Vascular reactivity to acetylcholine (Ach), with or without nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA), or sodium nitroprusside (SNP) by forearm venous occlusion plethysmography and insulin sensitivity index (M mg/kg/min) in euglycemic clamp were measured in men without (n = 18, control group) or with (n = 19, metabolic syndrome group) metabolic syndrome.
Results: (1) Ach-induced maximal forearm blood flow (maxFBF) was impaired in subjects with metabolic syndrome. In particular, the NOS-dependent component of Ach-induced maxFBF was selectively decreased, while the NOS-independent component remained relatively unchanged. (2) Ach-induced maxFBF and ΔAch-induced maxFBF with L-NMMA were correlated with waist circumference, glucose, and triglycerides, and most strongly correlated with visceral fat area, adiponectin, and M. (3) Multivariate regression analysis indicated that individual metabolic risk components explained Ach-induced maxFBF by 4–21 %. Clustering of all metabolic risk components increased this to 35 %, and the presence of metabolic syndrome explained 30 %, indicating that defining metabolic syndrome can effectively predict impairment of endothelial dysfunction.
Conclusions: Endothelial dysfunction was correlated with individual metabolic risk components, but more strongly with clustering of the components under a condition with low insulin sensitivity. We suggest that in subjects with metabolic syndrome, endothelial function is impaired by multiple cardiovascular risk factors exclusively when under the condition of insulin insensitivity and also that defining metabolic syndrome can effectively predict impairment of endothelial dysfunction
Markers for obese and non-obese Type 2 diabetes identified using whole blood metabolomics
Definitive differences in blood metabolite profiles between obese and non-obese Type 2 diabetes (T2D) have not been established. We performed an LC–MS-based non-targeted metabolomic analysis of whole blood samples collected from subjects classified into 4 types, based on the presence or absence of obesity and T2D. Of the 125 compounds identified, 20, comprising mainly nucleobases and glucose metabolites, showed significant increases or decreases in the T2D group. These included cytidine, UDP-glucuronate, UMP, 6-phosphogluconate, and pentose-phosphate. Among those 20 compounds, 11 enriched in red blood cells (RBCs) have rarely been studied in the context of diabetes, indicating that RBC metabolism is more extensively disrupted than previously known. Correlation analysis revealed that these T2D markers include 15 HbA1c-associated and 5 irrelevant compounds that may reflect diabetic conditions by a different mechanism than that of HbA1c. In the obese group, enhanced protein and fatty acid catabolism causes increases in 13 compounds, including methylated or acetylated amino acids and short-chain carnitines. Our study, which may be considered a pilot investigation, suggests that changes in blood metabolism due to obesity and diabetes are large, but essentially independent.journal articl
Azilsartan, an angiotensin II type 1 receptor blocker, restores endothelial function by reducing vascular inflammation and by increasing the phosphorylation ratio Ser1177/Thr497 of endothelial nitric oxide synthase in diabetic mice
BACKGROUND: Azilsartan, an angiotensin II type 1 (AT1) receptor blocker (ARB), has a higher affinity for and slower dissociation from AT1 receptors and shows stronger inverse agonism compared to other ARBs. Possible benefits of azilsartan in diabetic vascular dysfunction have not been established. METHODS: We measured vascular reactivity of aortic rings in male KKAy diabetic mice treated with vehicle, 0.005% azilsartan, or 0.005% candesartan cilexetil for 3 weeks. Expression of markers of inflammation and oxidative stress was measured using semiquantitative RT-PCR in the vascular wall, perivascular fat, and skeletal muscle. Phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser(1177) and Thr(495) was measured using Western blotting, and the ratio of phosphorylation at Ser(1177) to phosphorylation at Thr(495) was used as a putative indicator of vascular eNOS activity. RESULTS: (1) Vascular endothelium–dependent relaxation with acetylcholine in KKAy mice was improved by azilsartan treatment compared to candesartan cilexetil; (2) the ratio of Ser(1177)/Thr(495) phosphorylation of eNOS was impaired in KKAy and was effectively restored by azilsartan; (3) anomalies in the expression levels of monocyte chemotactic protein 1 (MCP1), F4/80, NAD(P)H oxidase (Nox) 2, and Nox4 of the aortic wall and in the expression of TNFα in the perivascular fat were strongly attenuated by azilsartan compared to candesartan cilexetil. CONCLUSIONS: These results provide evidence that azilsartan prevents endothelial dysfunction in diabetic mice, more potently than does candesartan cilexetil. Azilsartan’s higher affinity for and slower dissociation from AT1 receptors may underlie its efficacy in diabetic vascular dysfunction via a dual effect on uncoupled eNOS and on Nox
Role of premature leptin surge in obesity resulting from intrauterine undernutrition
SummaryIntrauterine undernutrition is closely associated with obesity related to detrimental metabolic sequelae in adulthood. We report a mouse model in which offspring with fetal undernutrition (UN offspring), when fed a high-fat diet (HFD), develop pronounced weight gain and adiposity. In the neonatal period, UN offspring exhibited a premature onset of neonatal leptin surge compared to offspring with intrauterine normal nutrition (NN offspring). Unexpectedly, premature leptin surge generated in NN offspring by exogenous leptin administration led to accelerated weight gain with an HFD. Both UN offspring and neonatally leptin-treated NN offspring exhibited an impaired response to acute peripheral leptin administration on a regular chow diet (RCD) with impaired leptin transport to the brain as well as an increased density of hypothalamic nerve terminals. The present study suggests that the premature leptin surge alters energy regulation by the hypothalamus and contributes to “developmental origins of health and disease.
Peri-Renal Fat and Adiponectin
Background: The interactions of adipose tissue with the kidney are hypothesized to affect kidney function. Also, excessive peri-renal fat may increase the risk of cardiometabolic risk. However, the role(s) of peri-renal fat adipocytokine has never been evaluated.
Objectives: To elucidate levels of adiponectin expression in peri-renal and subcutaneous adipose tissue and its determinants in human biopsied samples.
Methods: A pair of subcutaneous and perirenal fat tissue samples were collected from 80 patients (men: 54; women: 26) who underwent urological operations. Subcutaneous adipose tissue (SAT) area, visceral adipose tissue (VAT) area and peri-renal adipose tissue (RAT) volume were quantified on abdominal computed tomography. Cytokine/adipocytokine expression was evaluated by real-time semi-quantitative polymerase chain reaction (qPCR). Probability was considered significant if P < 0.05.
Results: Current study evaluated determinants of plasma adiponectin levels and expression levels of adiponectin in SAT and RAT in human samples. We found that: first, plasma adiponectin levels were correlated with VAT area but not with BMI, waist circumference, SAT area, and RAT volume; second, expression levels of adiponectin in SAT were correlated with BMI, waist circumference, and SAT area but not with VAT area and RAT volume; and third, expression levels of adiponectin in RAT were correlated with all adiposity indices including BMI, waist circumference, SAT area, VAT area, and RAT volume.
Conclusion: This study evaluated levels of adiponectin expression in RAT and SAT and its determinants in patients who underwent urological operation. Levels of adiponectin mRNA in RAT were negatively correlated with remote fat mass in SAT and VAT and also with local fat mass in RAT, while level of adiponectin in SAT was not correlated with RAT volume. Further studies are warranted to evaluate roles of peri-renal fat mass accumulation and its pathophysiological machineries
Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice
Obesity is closely associated with the metabolic syndrome, a combination of disorders including insulin resistance, diabetes, dyslipidemia, and hypertension. A role for local glucocorticoid reamplification in obesity and the metabolic syndrome has been suggested. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) regenerates active cortisol from inactive 11-keto forms, and aP2-HSD1 mice with relative transgenic overexpression of this enzyme in fat cells develop visceral obesity with insulin resistance and dyslipidemia. Here we report that aP2-HSD1 mice also have high arterial blood pressure (BP). The mice have increased sensitivity to dietary salt and increased plasma levels of angiotensinogen, angiotensin II, and aldosterone. This hypertension is abolished by selective angiotensin II receptor AT-1 antagonist at a low dose that does not affect BP in non-Tg littermates. These findings suggest that activation of the circulating renin-angiotensin system (RAS) develops in aP2-HSD1 mice. The long-term hypertension is further reflected by an appreciable hypertrophy and hyperplasia of the distal tubule epithelium of the nephron, resembling salt-sensitive or angiotensin II–mediated hypertension. Taken together, our findings suggest that overexpression of 11β-HSD1 in fat is sufficient to cause salt-sensitive hypertension mediated by an activated RAS. The potential role of adipose 11β-HSD1 in mediating critical features of the metabolic syndrome extends beyond obesity and metabolic complications to include the most central cardiovascular feature of this disorder
Catecholamines Facilitate Fuel Expenditure and Protect Against Obesity via a Novel Network of the Gut-Brain Axis in Transcription Factor Skn-1-deficient Mice
AbstractTaste signals and nutrient stimuli sensed by the gastrointestinal tract are transmitted to the brain to regulate feeding behavior and energy homeostasis. This system is referred to as the gut-brain axis. Here we show that both brush cells and type II taste cells are eliminated in the gastrointestinal tract of transcription factor Skn-1 knockout (KO) mice. Despite unaltered food intake, Skn-1 KO mice have reduced body weight with lower body fat due to increased energy expenditure. In this model, 24-h urinary excretion of catecholamines was significantly elevated, accompanied by increased fatty acid β-oxidation and fuel dissipation in skeletal muscle and impaired insulin secretion driven by glucose. These results suggest the existence of brain-mediated energy homeostatic pathways originating from brush cells and type II taste cells in the gastrointestinal tract and ending in peripheral tissues, including the adrenal glands. The discovery of food-derived factors that regulate these cells may open new avenues the treatment of obesity and diabetes.Research ContextTaste signals and nutrient stimuli sensed by the gastrointestinal tract are transmitted to the brain to regulate feeding behavior and energy homeostasis along the gut-brain axis. We propose the concept that taste-receiving cells in the oral cavity and/or food-borne chemicals-receiving brush cells in the gut are involved in regulation of the body weight and adiposity via the brain. The discovery of food-derived factors that regulate these cells may open new avenues for the treatment of obesity and diabetes
Sex differences in the association between epicardial adipose tissue volume and left atrial volume index
Background
Sex disparities in the association between epicardial adipose tissue volume (EATV) and cardiovascular disease have been reported. The sex-dependent effects of EATV on left atrial (LA) size have not been elucidated.
Methods
Consecutive 247 subjects (median 65 [interquartile range 57, 75] years; 67% of men) who underwent multi-detector computed tomography without significant coronary artery disease or moderate to severe valvular disease were divided into two groups: patients with sinus rhythm (SR) or atrial fibrillation (AF). Sex differences in the association between the EATV index (EATVI) (mL/m2) and LA volume index (LAVI) in 63 SR (28 men and 35 women) and 184 AF (137 men and 47 women) patients were evaluated using univariate and multivariate regression analyses.
Results
In overall that includes both men and women, the relationship between EATVI and LAVI was not significantly correlated for patients with SR and AF. The relationship between EATVI and LAVI differed between men and women in both SR and AF groups. In SR patients, there was a positive relationship between EATVI and LAVI in men, but not in women. In contrast, in patients with AF, a negative relationship was found between EATVI and LAVI in women, whereas no association was found in men.
Conclusions
We evaluated sex differences in the association between EATVI and LAVI in patients with either SR or AF, and found a positive relationship in men with SR and a negative relationship in women with AF. This is the first report to evaluate sex differences in the relationship between EATVI and LAVI, suggesting that EAT may play a role, at least in part, in sex differences in the etiology of AF
Effect of dapagliflozin on 24-hour glycemic variables in Japanese patients with type 2 diabetes mellitus receiving basal insulin supported oral therapy (DBOT) : a multicenter, randomized, open-label, parallel-group study
Introduction: This study aimed to evaluate the impacts of dapagliflozin on 24-hour glucose variability and diabetes-related biochemical variables in Japanese patients with type 2 diabetes who had received basal insulin supported oral therapy (BOT).
Research design and methods: Changes in mean daily blood glucose level before and after 48–72 hours of add-on or no add-on of dapagliflozin (primary end point) and diabetes-related biochemical variables and major safety variables during the 12 weeks (secondary end point) were evaluated in the multicenter, randomized, two-arm, open-label, parallel-group comparison study.
Results: Among 36 participants, 18 were included in the no add-on group and 18 were included in the dapagliflozin add-on group. Age, gender, and body mass index were comparable between the groups. There were no changes in continuous glucose monitoring metrics in the no add-on group. In the dapagliflozin add-on group, mean glucose (183–156mg/dL, p=0.001), maximum glucose (300–253, p<0.01), and SD glucose (57–45, p<0.05) decreased. Time in range increased (p<0.05), while time above the range decreased in the dapagliflozin add-on group but not in the no add-on group. After 12-week treatment with dapagliflozin add-on, 8-hydroxy-2’-deoxyguanosine (8OHdG), as well as hemoglobin A1c (HbA1c), decreased.
Conclusions: This study showed that the mean daily blood glucose and other daily glucose profiles were amended after 48–72 hours of dapagliflozin add-on in Japanese patients with type 2 diabetes who received BOT. The diabetes-related biochemical variables such as HbA1c and urinary 8OHdG were also obtained during the 12 weeks of dapagliflozin add-on without major adverse events. A preferable 24-hour glucose profile in ‘time in ranges’ and an improvement in reactive oxygen species by dapagliflozin warrant us to evaluate these benefits in larger clinical studies
- …