353 research outputs found
Wearable piezoelectric mass sensor based on pH sensitive hydrogels for sweat pH monitoring
Colorimetric and electrochemical (bio)sensors are commonly employed in wearable platforms for sweat monitoring; nevertheless, they suffer from low stability of the sensitive element. In contrast, mass-(bio)sensors are commonly used for analyte detection at laboratory level only, due to their rigidity. To overcome these limitations, a flexible mass-(bio)sensor for sweat pH sensing is proposed. The device exploits the flexibility of piezoelectric AlN membranes fabricated on a polyimide substrate combined to the sensitive properties of a pH responsive hydrogel based on PEG-DA/CEA molecules. A resonant frequency shift is recorded due to the hydrogel swelling/shrinking at several pH. Our device shows a responsivity of about 12 kHz/pH unit when measured in artificial sweat formulation in the pH range 3-8. To the best of our knowledge, this is the first time that hydrogel mass variations are sensed by a flexible resonator, fostering the development of a new class of compliant and wearable devices
Lipopolysaccharide-induced leptin release is neurally controlled
Our hypothesis is that leptin release is controlled neurohormonally. Conscious, male rats bearing indwelling, external, jugular catheters were injected with the test drug or 0.9% NaCl (saline), and blood samples were drawn thereafter to measure plasma leptin. Anesthesia decreased plasma leptin concentrations within 10 min to a minimum at 120 min, followed by a rebound at 360 min. Administration (i.v.) of lipopolysaccharide (LPS) increased plasma leptin to almost twice baseline by 120 min, and it remained on a plateau for 360 min, accompanied by increased adipocyte leptin mRNA. Anesthesia largely blunted the LPS-induced leptin release at 120 min. Isoproterenol (β-adrenergic agonist) failed to alter plasma leptin but reduced LPS-induced leptin release significantly. Propranolol (β-receptor antagonist) produced a significant increase in plasma leptin but had no effect on the response to LPS. Phentolamine (α-adrenergic receptor blocker) not only increased plasma leptin (P < 0.001), but also augmented the LPS-induced increase (P < 0.001). α-Bromoergocryptine (dopaminergic-2 receptor agonist) decreased plasma leptin (P < 0.01) and blunted the LPS-induced rise in plasma leptin release (P < 0.001). We conclude that leptin is at least in part controlled neurally because anesthesia decreased plasma leptin and blocked its response to LPS. The findings that phentolamine and propranolol increased plasma leptin concentrations suggest that leptin release is inhibited by the sympathetic nervous system mediated principally by α-adrenergic receptors because phentolamine, but not propranolol, augmented the response to LPS. Because α-bromoergocryptine decreased basal and LPS-induced leptin release, dopaminergic neurons may inhibit basal and LPS-induced leptin release by suppression of release of prolactin from the adenohypophysis
The use of FDG-PET in the initial staging of 142 patients with follicular lymphoma: a retrospective study from the FOLL05 randomized trial of the Fondazione Italiana Linfomi
BACKGROUND: The role of [(18)F] fluorodeoxyglucose (FDG)-positron emission tomography (PET) in follicular lymphoma (FL) staging is not yet determined.
PATIENTS AND METHODS: The aim of the present study was to investigate the role of PET in the initial staging of FL patients enrolled in the FOLL05-phase-III trial that compared first-line regimens (R-CVP, R-CHOP and R-FM). Patients should have undergone conventional staging and have available PET baseline to be included.
RESULTS: A total of 142 patients were analysed. PET identified a higher number of nodal areas in 32% (46 of 142) of patients and more extranodal (EN) sites than computed tomography (CT) scan. Also, the Follicular Lymphoma International Prognostic Index (FLIPI) score increased in 18% (26 of 142) and decreased in 6% (9 of 142) of patients. Overall, the impact of PET on modifying the stage was highest in patients with limited stage. Actually, 62% (15 of 24) of cases with limited disease were upstaged with PET.
CONCLUSIONS: The inclusion of PET among staging procedures makes the evaluation of patients with FL more accurate and has the potential to modify therapy decision and prognosis in a moderate proportion of patients. Further prospective clinical trials on FL should incorporate PET at different moments, and the therapeutic criteria to start therapy should be re-visited in the views of this new tool
Development and characterization of a novel hybrid tissue engineering-based scaffold for spinal cord injury repair
Spinal cord injury (SCI) represents a significant health and social problem, and therefore it is vital to develop
novel strategies that can specifically target it. In this context, the objective of the present work was to develop a
new range of three-dimensional (3D) tubular structures aimed at inducing the regeneration within SCI sites. Up
to six different 3D tubular structures were initially developed by rapid prototyping: 3D bioplotting–based on a
biodegradable blend of starch. These structures were then further complemented by injecting Gellan Gum, a
polysaccharide-based hydrogel, in the central area of structures. The mechanical properties of these structures
were assessed using dynamic mechanical analysis, under both dry and wet conditions, and their morphologies=
porosities were analyzed using micro-computed tomography and scanning electron microscopy. Biological
evaluation was carried out to determine their cytotoxicity, using both minimum essential medium (MEM)
extraction and MTS tests, as well as by encapsulation of an oligodendrocyte-like cell (M03-13 cell line) within the
hydrogel phase. The histomorphometric analysis showed a fully interconnected network of pores with porosity
ranging from 70% to 85%. Scaffolds presented compressive modulus ranging from 17.4 to 62.0MPa and 4.42 to
27.4 MPa under dry and wet conditions, respectively. Cytotoxicity assays revealed that the hybrid starch=poly-ecaprolactone=
Gellan Gum scaffolds were noncytotoxic, as they did not cause major alterations on cell morphology,
proliferation, and metabolic viability. Moreover, preliminary cell encapsulation assays showed that the
hybrid scaffolds could support the in vitro culture of oligodendrocyte-like cells. Finally, preliminary in vivo
studies conducted in a hemisection rat SCI model revealed that the above-referred structures were well integrated
within the injury and did not trigger chronic inflammatory processes. The results herein presented
indicate that these 3D systems might be of use in future SCI regeneration approaches.Portuguese Foundation for Science and Technology through funds from Programa Operacional Ciencia, Tecnologia, Inovacao (POCTI) and/or Fundo Europeu de Desenvolvimento Regional (FEDER) programs (funding to ICVS, 3B's Research Group, predoctoral and postdoctoral fellowships to N. A. Silva, J. T. Oliveira, A. J. Salgado, and R. A. Sousa-SFRH/BD/40684/2007; SFRH/BD/17135/2004; SFRH/BPD/17595/2004; SFRH/BPD/17151/2004)
The Role of Citrullinated Proteins Suggests a Novel Mechanism in the Pathogenesis of Multiple Sclerosis
The pathogenesis of MS is unknown. In our studies, we have demonstrated an important role for citrullinated myelin basic protein (MBP). The accompanying loss of positive charge compromises the ability of MBP to interact with the lipid bilayer. The conversion of arginine to citrulline in brain is carried out by an enzyme peptidyl arginine deiminase (PAD) 2. The amount of PAD 2 in brain was increased in MS normal-appearing white matter. The mechanism responsible for this increase involved hypomethylation of the promoter region in the PAD 2 gene in MS, but no change (compared to normal) was found in thymus tissue DNA from the same MS patients. In addition, no change was observed in other neurological diseases, including Alzheimer’s, Parkinson’s, and Huntington’s. We propose that citrullinated MBP, resulting from elevated levels of PAD 2 represents an important biochemical pathway in the pathogenesis of MS
Enhanced cellular uptake of size-separated lipophilic silicon nanoparticles
Specific size, shape and surface chemistry influence the biological activity of nanoparticles. In the case of lipophilic nanoparticles, which are widely used in consumer products, there is evidence that particle size and formulation influences skin permeability and that lipophilic particles smaller than 6 nm can embed in lipid bilayers. Since most nanoparticle synthetic procedures result in mixtures of different particles, post-synthetic purification promises to provide insights into nanostructure-function relationships. Here we used size-selective precipitation to separate lipophilic allyl-benzyl-capped silicon nanoparticles into monodisperse fractions within the range of 1 nm to 5 nm. We measured liposomal encapsulation and cellular uptake of the monodisperse particles and found them to have generally low cytotoxicities in Hela cells. However, specific fractions showed reproducibly higher cytotoxicity than other fractions as well as the unseparated ensemble. Measurements indicate that the cytotoxicity mechanism involves oxidative stress and the differential cytotoxicity is due to enhanced cellular uptake by specific fractions. The results indicate that specific particles, with enhanced suitability for incorporation into lipophilic regions of liposomes and subsequent in vitro delivery to cells, are enriched in certain fractions
Role of the IL-1 Pathway in Dopaminergic Neurodegeneration and Decreased Voluntary Movement
Interleukin-1 (IL-1), a proinflammatory cytokine synthesized and released by activated microglia, can cause dopaminergic neurodegeneration leading to Parkinsons disease (PD). However, it is uncertain whether IL-1 can act directly, or by exacerbating the harmful actions of other brain insults. To ascertain the role of the IL-1 pathway on dopaminergic neurodegeneration and motor skills during aging, we compared mice with impaired [caspase-1 knockout (casp1(-/-))] or overactivated IL-1 activity [IL-1 receptor antagonist knockout (IL-1ra(-/-))] to wild-type (wt) mice at young and middle age. Their motor skills were evaluated by the open-field and rotarod tests, and quantification of their dopamine neurons and activated microglia within the substantia nigra were performed by immunohistochemistry. IL-1ra(-/-) mice showed an age-related decline in motor skills, a reduced number of dopamine neurons, and an increase in activated microglia when compared to wt or casp1(-/-) mice. Casp1(-/-) mice had similar changes in motor skills and dopamine neurons, but fewer activated microglia cells than wt mice. Our results suggest that the overactivated IL-1 pathway occurring in IL-1ra(-/-) mice in the absence of inflammatory interventions (e.g., intracerebral injections performed in animal models of PD) increased activated microglia, decreased the number of dopaminergic neurons, and reduced their motor skills. Decreased IL-1 activity in casp1(-/-) mice did not yield clear protective effects when compared with wt mice. In summary, in the absence of overt brain insults, chronic activation of the IL-1 pathway may promote pathological aspects of PD per se, but its impairment does not appear to yield advantages over wt mice.Funding Agencies|John Curtin School of Medical Research, The Australian National University</p
Non-wettable, Oxidation-Stable, Brightly Luminescent, Perfluorodecyl-Capped Silicon Nanocrystal Film
Relationship Between Sonic Hedgehog Protein, Brain-Derived Neurotrophic Factor and Oxidative Stress in Autism Spectrum Disorders
The etiology of autism spectrum disorders (ASD) is not well known but oxidative stress has been suggested to play a pathological role. We report here that the serum levels of Sonic hedgehog (SHH) protein and brain-derived neurotrophic factor (BDNF) might be linked to oxidative stress in ASD. By using the whole blood or polymorphonuclear leukocytes, we demonstrated that autistic children produced a significantly higher level of oxygen free radicals (OFR). In addition, we found significantly higher levels of serum SHH protein in children with mild as well as severe form of autism. We also found that the serum level of BDNF was significantly reduced in autistic children with mild form of the disorder but not with severe form of the disorder. Our findings are the first to report a correlation between SHH, BDNF and OFR in autistic children, suggesting a pathological role of oxidative stress and SHH in autism spectrum disorders
- …